Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 3): 853-861, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511017

RESUMO

A novel experimental setup dedicated to the study of liquid and amorphous materials, on the white beam station of the PSICHÉ beamline at SOLEIL, is described. The Beer-Lambert absorption method has been developed using a broad-spectrum (white) incident beam for in situ density measurements at extreme conditions of pressure and temperature. This technique has been combined with other existing X-ray techniques (radiographic imaging, tomography and combined angle energy dispersive X-ray diffraction). Such a multi-technical approach offers new possibilities for the characterization of liquid and amorphous materials at high pressure and high temperature. The strength of this approach is illustrated by density measurements of liquid gallium at pressures up to 4 GPa, combining the three independent X-ray techniques (the Beer-Lambert absorption method, tomography and X-ray diffraction).

2.
Phys Rev Lett ; 125(19): 195501, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216588

RESUMO

The phase diagram and melting curve of water ice is investigated up to 45 GPa and 1600 K by synchrotron x-ray diffraction in the resistively and laser heated diamond anvil cell. Our melting data evidence a triple point at 14.6 GPa, 850 K. The latter is shown to be related to a first-order solid transition from the dynamically disordered form of ice VII, denoted ice VII^{'}, toward a high-temperature phase with the same bcc oxygen lattice but larger volume and higher entropy. Our experiments are compared to ab initio molecular dynamics simulations, enabling us to identify the high-temperature bcc phase with the predicted superionic ice VII^{''} phase [J.-A. Hernandez and R. Caracas, Phys. Rev. Lett. 117, 135503 (2016).PRLTAO0031-900710.1103/PhysRevLett.117.135503].

3.
J Synchrotron Radiat ; 25(Pt 3): 818-825, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714193

RESUMO

In situ microtomography at high pressure and temperature has developed rapidly in the last decade, driven by the development of new high-pressure apparatus. It is now routinely possible to characterize material under high pressure with acquisition times for tomograms of the order of tens of minutes. Here, advantage was taken of the possibility to combine the use of a pink beam projected through a standard Paris-Edinburgh press in order to demonstrate the possibility to perform high-speed synchrotron X-ray tomography at high pressure and temperature allowing complete high-resolution tomograms to be acquired in about 10 s. This gives direct visualization to rapidly evolving or unstable systems, such as flowing liquids or reacting components, and avoids assumptions in the interpretation of quenched samples. Using algebraic reconstruction techniques allows the missing angle artefacts that result from the columns of the press to be minimized.

4.
J Synchrotron Radiat ; 24(Pt 1): 240-247, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009563

RESUMO

X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

5.
Rev Sci Instrum ; 87(9): 093704, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782575

RESUMO

PSICHE (Pressure, Structure and Imaging by Contrast at High Energy) is the high-energy beam line of the SOLEIL synchrotron. The beam line is designed to study samples at extreme pressures, using diffraction, and to perform imaging and tomography for materials science and other diverse applications. This paper presents the tomograph and the use of the beam line for imaging, with emphasis on developments made with respect to existing instruments. Of particular note are the high load capacity rotation stage with free central aperture for installing large or complex samples and sample environments, x-ray mirror and filter optics for pink beam imaging, and multiple options for combining imaging and diffraction measurement. We describe how x-ray imaging techniques have been integrated into high-pressure experiments. The design and the specifications of the beam line are described, and several case studies drawn from the first user experiments are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...