Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 14911-14936, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157345

RESUMO

A cloud of very fast, O(km/s), and very fine, O(µm), particles may be ejected when a strong shock impacts and possibly melts the free surface of a solid metal. To quantify these dynamics, this work develops an ultraviolet, long-working distance, two-pulse Digital Holographic Microscopy (DHM) configuration and is the first to replace film recording with digital sensors for this challenging application. A proposed multi-iteration DHM processing algorithm is demonstrated for automated measures of the sizes, velocities, and three-dimensional positions of non-spherical particles. Ejecta as small as 2 µm diameter are successfully tracked, while uncertainty simulations indicate that particle size distributions are accurately quantified for diameters ≥4 µm. These techniques are demonstrated on three explosively driven experiments. Measured ejecta size and velocity statistics are shown to be consistent with prior film-based recording, while also revealing spatial variations in velocities and 3D positions that have yet to be widely investigated. Having eliminated time-consuming analog film processing, the methodologies proposed here are expected to significantly accelerate future experimental investigation of ejecta physics.

2.
Appl Opt ; 62(6): 1598-1609, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821325

RESUMO

A laser absorption spectroscopy diagnostic integrated within a hardened optical probe was used to measure temperature and water mole fraction at 500 kHz in post-detonation fireballs of explosives. In the experiments, an exploding-bridgewire detonator initiated a 25 g hemisphere of explosive (N5 or PETN). This produced a hemispherical fireball that traveled radially towards a hardened measurement probe. The probe contained a pressure transducer and optical equipment to pitch fiber-coupled laser light across a 12.6 cm gap onto a detector. Tunable diode lasers emitting near 7185.6 and 6806c m -1 were used to measure the absorbance spectrum of H 2 O utilizing peak-picking scanned-wavelength-modulation spectroscopy with a scan frequency of 500 kHz and modulation frequencies of 35 and 45.5 MHz, respectively. This enabled measurements of temperature and X H 2 O in the shock-heated air and trailing fireball at 500 kHz. Time histories of pressure, temperature, and H 2 O mole fraction were acquired at different standoff distances to quantify how the fireball evolved in space and time as well as to compare measured quantities between PETN and N5 fireballs. The standard deviation of temperature and X H 2 O during one representative test were found to be 17 K (1.3%) and 0.011 (5%), respectively. These measurements demonstrate this diagnostic's ability to provide rapid and reliable measurements in harsh, highly transient post-detonation environments produced by solid explosives.

3.
Phys Rev E ; 103(4-1): 043105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005901

RESUMO

Evaporation of streams of liquid droplets in environments at vacuum pressures below the vapor pressure has not been widely studied. Here, experiments and simulations are reported that quantify the change in droplet diameter when a steady stream of ≈100 µm diameter drops is injected into a chamber initially evacuated to <10^{-8}bar. In experiments, droplets fall through the center of a 0.8 m long liquid nitrogen cooled shroud, simulating infinity radiation and vapor mass flux boundary conditions. Experimentally measured changes in drop diameters vary from ≈0 to 6 µm when the initial vapor pressure is increased from 10^{-6} to 10^{-3} bar by heating the liquid. Measured diameter changes are predicted by a model based on the Hertz-Knudsen equation. One uncertainty in the calculation is the "sticking coefficient" ß. Assuming a constant ß for all conditions studied here, predicted diameter changes best match measurements with ß≈0.3. This value falls within the range of ß reported in the literature for organic liquids. Finally, at the higher vapor pressure conditions considered here, the drop stream disperses transverse to the main flow direction. This spread is attributed to forces imparted by an absolute pressure gradient produced by the evaporating stream.

4.
Appl Opt ; 59(27): 8293-8301, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976415

RESUMO

Three-beam rotational coherent anti-Stokes Raman scattering (CARS) measurements performed in highly scattering environments are susceptible to contamination by two-beam CARS signals generated by the pump-probe and Stokes-probe interactions at the measurement volume. If this occurs, differences in the Raman excitation bandwidth between the two-beam and three-beam CARS signals can add significant errors to the spectral analysis. This interference to the best of our knowledge has not been acknowledged in previous three-beam rotational CARS experiments, but may introduce measurement errors up to 25% depending on the temperature, amount of scattering, and differences between the two-beam and three-beam Raman excitation bandwidths. In this work, the presence of two-beam CARS signal contamination was experimentally verified using a femtosecond-picosecond rotational CARS instrument in two scattering environments: (1) a fireball generated by a laboratory-scale explosion that contained particulate matter, metal fragments, and soot, and (2) a flow of air and small liquid droplets. A polarization scheme is presented to overcome this interference. By rotating the pump and Stokes polarizations +55∘ and -55∘ from the probe, respectively, the two-beam and three-beam CARS signals are orthogonally polarized and can be separated using a polarization analyzer. Using this polarization arrangement, the Raman-resonant three-beam CARS signal amplitude is reduced by a factor of 2.3 compared to the case where all polarizations are parallel. This method is successfully demonstrated in both scattering environments. A theoretical model is presented, and the temperature measurement error is studied for different experimental conditions. The criteria for when this interference may be present are discussed.

5.
Nat Commun ; 11(1): 1129, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111824

RESUMO

Holography is a powerful tool for three-dimensional imaging. However, in explosive, supersonic, hypersonic, cavitating, or ionizing environments, shock-waves and density gradients impart phase distortions that obscure objects in the field-of-view. Capturing time-resolved information in these environments also requires ultra-high-speed acquisition. To reduce phase distortions and increase imaging rates, we introduce an ultra-high-speed phase conjugate digital in-line holography (PCDIH) technique. In this concept, a coherent beam passes through the shock-wave distortion, reflects off a phase conjugate mirror, and propagates back through the shock-wave, thereby minimizing imaging distortions from phase delays. By implementing the method using a pulse-burst laser setup at up to 5 million-frames-per-second, time-resolved holograms of ultra-fast events are now possible. This technique is applied for holographic imaging through laser-spark plasma-generated shock-waves and to enable three-dimensional tracking of explosively generated hypersonic fragments. Simulations further advance our understanding of physical processes and experiments demonstrate ultra-high-speed PCDIH techniques for capturing dynamics.

6.
Opt Express ; 27(6): 7997-8010, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052625

RESUMO

This work details the development of an algorithm to determine 3D position and in plane size and shape of particles by exploiting the perspective shift capabilities of a plenoptic camera combined with stereo-matching methods. This algorithm is validated using an experimental data set previously examined in a refocusing based particle location study in which a static particle field is translated to provide known depth displacements at varied magnification and object distances. Examination of these results indicates increased accuracy and precision is achieved compared to a previous refocusing based method at significantly reduced computational costs. The perspective shift method is further applied to fragment localization and sizing in a lab scale fragmenting explosive.

7.
Appl Opt ; 58(5): A65-A73, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30873962

RESUMO

Digital inline holography has been proven to provide three-dimensional droplet position, size, and velocity distributions with a single camera. These data are crucial for understanding multiphase flows. In this work, we examine the performance of this diagnostic in the limit of very small particles, on the order of a pixel in diameter and smaller, and propose a postprocessing method to improve them: Lanczos interpolation. The Lanczos interpolation kernel is the digital implementation of the Whittaker sinc filter and strikes a compromise between maintaining the spatial frequency ceiling of the original digital image and computational cost of the interpolation. Without Lanczos interpolation, or supersampling, the ultimate detectable particle size floor is on the order of four pixel widths. We show in this work that this limit can be reduced by 50% or more with supersampling, depending upon the desired diameter accuracy, and examine the effect of supersampling on the resulting accuracy of the extracted size and position of spherical particles. Extending this resolution limit increases the overall detection efficiency of the diagnostic. Since this increases the spatial dynamic range of the diagnostic, it can also allow a larger field of view to be captured with the same particle size floor.

8.
Opt Lett ; 43(21): 5363-5366, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383008

RESUMO

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

9.
Appl Opt ; 57(4): 914-923, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400767

RESUMO

The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

10.
Opt Lett ; 43(4): 803-806, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29443998

RESUMO

Digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. The results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

11.
Opt Lett ; 43(2): 312-315, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29328268

RESUMO

Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow. Thus, scattering noise from outside the measurement volume is eliminated. This PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.

12.
Opt Express ; 25(18): 21801-21814, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041473

RESUMO

Plenoptic imaging is a 3D imaging technique that has been applied for quantification of 3D particle locations and sizes. This work experimentally evaluates the accuracy and precision of such measurements by investigating a static particle field translated to known displacements. Measured 3D displacement values are determined from sharpness metrics applied to volumetric representations of the particle field created using refocused plenoptic images, corrected using a recently developed calibration technique. Comparison of measured and known displacements for many thousands of particles allows for evaluation of measurement uncertainty. Mean displacement error, as a measure of accuracy, is shown to agree with predicted spatial resolution over the entire measurement domain, indicating robustness of the calibration methods. On the other hand, variation in the error, as a measure of precision, fluctuates as a function of particle depth in the optical direction. Error shows the smallest variation within the predicted depth of field of the plenoptic camera, with a gradual increase outside this range. The quantitative uncertainty values provided here can guide future measurement optimization and will serve as useful metrics for design of improved processing algorithms.

13.
Appl Opt ; 55(23): 6410-20, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27534487

RESUMO

Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.

14.
Appl Opt ; 55(18): 4958-66, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27409125

RESUMO

We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.

15.
Appl Opt ; 55(11): 2892-903, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-27139851

RESUMO

High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from single experimental realizations. The method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.

16.
Appl Opt ; 53(27): G130-8, 2014 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-25322121

RESUMO

Digital in-line holography provides simultaneous particle size and three-dimensional position measurements. In general, the measurement accuracy varies locally, and tends to decrease where particles are closely spaced, due to noise resulting from diffraction by adjacent particles. Aggravating the situation is the identification of transversely adjoining particles as a single particle, which introduces significant errors in both size and position measurements. Here, we develop a refinement procedure that distinguishes such erroneous particles from accurately detected ones and further separates individual particles. Effectiveness of the refinement is characterized using simulations, experimental holograms of calibration fields, and a few practical applications to liquid breakup. Significant improvements in the accuracy of the measured particle sizes, positions, and displacements confirm the usefulness of the proposed method.

17.
Opt Lett ; 39(17): 5126-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166090

RESUMO

Burning aluminized propellants eject reacting molten aluminum drops with a broad size distribution. Prior to this work, in situ measurement of the drop size statistics and other quantitative flow properties was complicated by the narrow depth-of-focus of microscopic videography. Here, digital in-line holography (DIH) is demonstrated for quantitative volumetric imaging of the propellant plume. For the first time, to the best of our knowledge, in-focus features, including burning surfaces, drop morphologies, and reaction zones, are automatically measured through a depth spanning many millimeters. By quantifying all drops within the line of sight, DIH provides an order of magnitude increase in the effective data rate compared to traditional imaging. This enables rapid quantification of the drop size distribution with limited experimental repetition.

18.
Opt Lett ; 38(20): 4015-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321909

RESUMO

A new method to quantify three-dimensional particle fields using digital in-line holography is presented. From sequentially recorded holograms, the maximum cross correlation of edge sharpness within local particle windows yields an accurate measurement of particle displacements. Experiments demonstrate out-of-plane displacement uncertainty of approximately 0.15 mean particle diameters, which is roughly an order-of-magnitude improvement compared with alternative methods. Application to shotgun pellets demonstrates robustness despite experimental noise.

19.
Opt Express ; 21(22): 26432-49, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216864

RESUMO

In the detection of particles using digital in-line holography, measurement accuracy is substantially influenced by the hologram processing method. In particular, a number of methods have been proposed to determine the out-of-plane particle depth (z location). However, due to the lack of consistent uncertainty characterization, it has been unclear which method is best suited to a given measurement problem. In this work, depth determination accuracies of seven particle detection methods, including a recently proposed hybrid method, are systematically investigated in terms of relative depth measurement errors and uncertainties. Both synthetic and experimental holograms of particle fields are considered at conditions relevant to particle sizing and tracking. While all methods display a range of particle conditions where they are most accurate, in general the hybrid method is shown to be the most robust with depth uncertainty less than twice the particle diameter over a wide range of particle field conditions.


Assuntos
Algoritmos , Holografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Nanopartículas/análise , Reconhecimento Automatizado de Padrão/métodos , Aumento da Imagem/métodos , Sistemas On-Line , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Opt Lett ; 38(11): 1893-5, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23722780

RESUMO

Quantitative application of digital in-line holography (DIH) to characterize multiphase fragmentation is demonstrated. DIH is applied to record sequential holograms of the breakup of an ethanol droplet in an aerodynamic flow field. Various stages of the breakup process are recorded, including deformation, bag growth, bag breakup, and rim breakup. A recently proposed hybrid method is applied to extract the three-dimensional (3D) location and size of secondary droplets as well as the 3D morphology of the rim. Particle matching between sequential frames is used to determine the velocity. Coincidence with the results obtained from phase Doppler anemometry measurement demonstrates the accuracy of measurement by DIH and the hybrid method.


Assuntos
Holografia/métodos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...