Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 272: 116022, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221084

RESUMO

The main aim of this study was to evaluate options for addressing two pressing challenges related to environmental quality and circular economy stemming from wastage or underutilization of abundant biomass residue resources and contamination of water by industrial effluents. In this study we focused on residues (endocarp) from Macaúba palm (Acrocomia aculeata) used for oil production, its conversion to activated biochar, and its potential use in uranium (U) removal from aqueous solutions. Batch adsorption experiments showed a much higher uranyl ions (U(VI)) removal efficiency of activated biochar compared to untreated biochar. As a result of activation, an increase in removal efficiency from 80.5% (untreated biochar) to 99.2% (after activation) was observed for a 5 mg L-1 initial U(VI) concentration solution adjusted to pH 3 using a 10 g L-1 adsorbent dosage. The BET surface area increased from 0.83 to 643 m2 g-1 with activation. Surface topography of the activated biochar showed a very characteristic morphology with high porosity. Activation significantly affected chemical surface of the biochar. FTIR analysis indicated that U(VI) was removed by physisorption from the aqueous solution. The adsorbed U(VI) was detected by micro X-ray fluorescence technique. Adsorption isotherms were employed to represent the results of the U adsorption onto the activated biochar. An estimation of the best fit was performed by calculating different deviation equations, also called error functions. The Redlich-Peterson isotherm model was the most appropriate for fitting the experimental data, suggesting heterogeneity of adsorption sites with different affinities for uranium setting up as a hybrid adsorption. These results demonstrated that physical activation significantly increases the adsorption capacity of macauba endocarp-derived biochar for uranium in aqueous solutions, and therefore open up a potential new application for this type of waste-derived biochar.


Assuntos
Urânio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Urânio/análise , Água
2.
RSC Adv ; 10(46): 27706-27712, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516950

RESUMO

Even with all the biological problems associated with bisphenol-A (BPA), this chemical is still being widely used, especially in thermal paper receipts. In this study, renewable mesoporous silica nanoparticles (MSN), obtained from sugarcane ash, functionalized with hexadecyltrimethylammonium (CTAB) were applied as an adsorbent in the removal of BPA from the aqueous solution. The versatility of this material and its BPA adsorption capacity were tested at different pH values, being practically constant at pH between 4 and 9, with a slight increase in pH 10 and a greater increase in pH 11. The removal time evaluation indicates a very fast adsorption process, removing almost 90% of BPA in the first 20 min of contact. The kinetic model indicates a monolayer formation of BPA molecules on the MSN-CTAB surface. The maximum adsorption capacity (Q max) was 155.78 mg g-1, one of the highest found in literature, and the highest for material from a renewable source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...