Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7705, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382092

RESUMO

Uncontrolled oxidative stress, reported in Salmonella and HIV infections, colorectal cancer or severe acute malnutrition, has been associated with anaerobic gut microbiome alteration, impaired butyrate production, mucosal immunity dysregulation and disruption of host-bacterial mutualism. However, the role of major antioxidant molecules in the human body, such as glutathione, ascorbic acid and uric acid, has been neglected in this context. Here, we performed an in vitro metabolomics study of the 3 most odorous anaerobic microbes isolated from the human gut in our laboratory (Clostridium sporogenes, Clostridium subterminale and Romboutsia lituseburensis) when grown in anaerobiosis or in aerobiosis with these 3 antioxidant molecules via gas and liquid chromatography-mass spectrometry (GC/MS and LC/MS). There was no growth or volatile organic compound production in aerobic cultures without the 3 antioxidant molecules. In anaerobiosis, the major metabolic products of the bacteria were thiols, alcohols and short-chain fatty acid esters. The production of alkanes, cycloheptatriene and, paradoxically, increased butyrate production, was observed in the cultures grown in aerobiosis with the 3 antioxidant molecules. The qualitative shift suggests specific molecular mechanisms that remain to be elucidated. The increased production of butyrate, but also isobutyrate and isovalerate in vitro suggests that these 3 antioxidant molecules contributed to the maintenance and active resilience of host-bacterial mutualism against mucosal oxygen and uncontrolled oxidative stress in vivo.


Assuntos
Antioxidantes/metabolismo , Microbioma Gastrointestinal/genética , Metabolômica , Estresse Oxidativo/genética , Aerobiose/genética , Anaerobiose/genética , Ácido Ascórbico/metabolismo , Butiratos/metabolismo , Cromatografia Líquida , Clostridiales/metabolismo , Clostridium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glutationa/metabolismo , Humanos , Oxigênio/metabolismo , Ácido Úrico/metabolismo
2.
Future Microbiol ; 13: 369-381, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29446650

RESUMO

Anaerobes represent the dominating population in the human gut microbiota and play a key role in gut homeostasis. In addition, several anaerobes are now considered as probiotics and they remain essential to several processes in the field of biotechnology. With the implementation of MALDI-TOF MS in routine laboratories, anaerobes are no longer neglected in clinical microbiology, as their identification is made easy. However, the isolation and identification of anaerobic bacteria, remains time consuming, fastidious and costly. Various strategies have been developed, from sampling to culturing human specimens, which will be discussed in this paper. Also, particular attention is paid to isolating species with special medical importance, as for contribution to the field of culturomics.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/isolamento & purificação , Microbiota , Antioxidantes , Técnicas Bacteriológicas , Técnicas de Cocultura , Meios de Cultura/química , Humanos , Metagenômica , Análise de Célula Única , Manejo de Espécimes
3.
Nat Microbiol ; 1: 16203, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819657

RESUMO

Metagenomics revolutionized the understanding of the relations among the human microbiome, health and diseases, but generated a countless number of sequences that have not been assigned to a known microorganism1. The pure culture of prokaryotes, neglected in recent decades, remains essential to elucidating the role of these organisms2. We recently introduced microbial culturomics, a culturing approach that uses multiple culture conditions and matrix-assisted laser desorption/ionization-time of flight and 16S rRNA for identification2. Here, we have selected the best culture conditions to increase the number of studied samples and have applied new protocols (fresh-sample inoculation; detection of microcolonies and specific cultures of Proteobacteria and microaerophilic and halophilic prokaryotes) to address the weaknesses of the previous studies3-5. We identified 1,057 prokaryotic species, thereby adding 531 species to the human gut repertoire: 146 bacteria known in humans but not in the gut, 187 bacteria and 1 archaea not previously isolated in humans, and 197 potentially new species. Genome sequencing was performed on the new species. By comparing the results of the metagenomic and culturomic analyses, we show that the use of culturomics allows the culture of organisms corresponding to sequences previously not assigned. Altogether, culturomics doubles the number of species isolated at least once from the human gut.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Trato Gastrointestinal/microbiologia , Técnicas Microbiológicas/métodos , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbioma Gastrointestinal , Humanos , Microbiota , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...