Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 9(3): 626-644, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33241797

RESUMO

Carbon nano onions (CNOs) are carbonaceous nanostructures composed of multiple concentric shells of fullerenes. These cage-within-cage structures remain as one of the most exciting and fascinating carbon forms, along with graphene and its derivatives, due to their unique chemical and physical properties. Their exceptional biocompatibility and biosafety make them an attractive choice in a wide range of areas, including biological systems. This nanomaterial displays low toxicity, high dispersity in aqueous solutions (upon surface functionalization), and high pharmaceutical efficiency. Even though CNOs were discovered almost simultaneously along with carbon nanotubes (CNTs), their potential in biomedical applications still appears unrealized. The existence of CNOs is equally important, just like any other carbon nanostructures such as CNTs and fullerenes, because they display the ability of carbon to form another unique nanostructure with wonderful properties. Therefore, this mini-review summarizes recent studies geared towards developing CNOs for various biomedical applications, including sensing, drug delivery, imaging, tissue engineering, and as a therapeutic drug. It concludes by discussing other potential applications of this unique nanomaterial.


Assuntos
Fulerenos , Nanoestruturas , Nanotubos de Carbono , Cebolas , Engenharia Tecidual
2.
Biomater Sci ; 8(15): 4109-4128, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638706

RESUMO

With an aging population that has been increasing in recent years, the need for the development of therapeutic approaches for treatment of neurodegenerative disorders (ND) has increased. ND, which are characterized by the progressive loss of the structure or function of neurons, are often associated with neuronal death. In spite of screening numerous drugs, currently there is no specific treatment that can cure these diseases or slow down their progression. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Huntington's disease, and prion diseases belong to ND which affect enormous numbers of people globally. There are some main possible reasons for failure in the treatment of neurodegenerative diseases such as limitations introduced by the Blood-Brain Barrier (BBB), the Blood-Cerebrospinal Fluid Barrier (BCFB) and P-glycoproteins. Current advances in nanotechnology present opportunities to overcome the mentioned limitations by using nanotechnology and designing nanomaterials improving the delivery of active drug candidates. Some of the basic and developing strategies to overcome drug delivery impediments are the local delivery of drugs, receptor-mediated transcytosis, physicochemical disruption of the BBB, cell-penetrating peptides and magnetic disruption. Recently, the application of nanoparticles has been developed to improve the efficiency of drug delivery. Nanoengineered particles as nanodrugs possess the capacity to cross the BBB and also show decreased invasiveness. Examples include inorganic, magnetic, polymeric and carbonic nanoparticles that have been developed to improve drug delivery efficiency. Despite numerous papers published in this filed, there are some unsolved issues that need to be addressed for successful treatment of neurodegenerative diseases. These are discussed herein.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Idoso , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia , Doenças Neurodegenerativas/tratamento farmacológico
3.
ACS Omega ; 5(22): 12583-12595, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548442

RESUMO

The design of a drug that successfully overcomes the constraints imposed by the blood-brain barrier (BBB, which acts as a gatekeeper to the entry of substances into the brain) requires an understanding of the biological firewall. It is also of utmost importance to understand the physicochemical properties of the said drug and how it engages the BBB to avoid undesired side effects. Since fewer than 5% of the tested molecules can pass through the BBB, drug development pertaining to brain-related disorders takes inordinately long to develop. Furthermore, in most cases it is also unsuccessful for allied reasons. Several drug delivery systems (DDSs) have shown excellent potential in drug delivery across the BBB while demonstrating minimal side effects. This mini-review summarizes key features of the BBB, recapitulates recent advances in our understanding of the BBB, and highlights existing strategies for the delivery of drug to the brain parenchyma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...