Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 24(13): 14608-17, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410613

RESUMO

We propose a novel phase-matching scheme in GaP whispering-gallery-mode microdisks grown on Si substrate combining modal and 4¯ -quasi-phase-matching for second-harmonic-generation. The technique consists in unlocking parity-forbidden processes by tailoring the antiphase domain distribution in the GaP layer. Our proposal can be used to overcome the limitations of form birefringence phase-matching and 4¯ -quasi-phase-matching using high order whispering-gallery-modes. The high frequency conversion efficiency of this new scheme demonstrates the competitiveness of nonlinear photonic devices monolithically integrated on silicon.

2.
Phys Rev Lett ; 116(13): 133902, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081979

RESUMO

Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q) factors up to 10^{11} have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 10^{10} in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index n_{g}∼10^{6}). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3×10^{12} at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...