Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 181: 263-271, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38677636

RESUMO

The remarkable damage-tolerance of enamel has been attributed to its hierarchical microstructure and the organized bands of decussated rods. A thorough characterization of the microscale rod evolution within the enamel is needed to elucidate this complex structure. While prior efforts in this area have made use of single particle tracking to track a single rod evolution to various degrees of success, such a process can be both computationally and labor intensive, limited to the evolution path of a single rod, and is therefore prone to error from potentially tracking outliers. Particle image velocimetry (PIV) is a well-established algorithm to derive field information from image sequences for processes that are time-dependent, such as fluid flows and structural deformation. In this work, we demonstrate the use of PIV in extracting the full-field microstructural distribution of rods within the enamel. Enamel samples from a wild African lion were analyzed using high-energy synchrotron X-ray micro-tomography. Results from the PIV analysis provide sufficient full-field information to reconstruct the growth of individual rods that can potentially enable rapid analysis of complex microstructures from high resolution synchrotron datasets. Such information can serve as a template for designing damage-tolerant bioinspired structures for advanced manufacturing. STATEMENT OF SIGNIFICANCE: Thorough characterization and analysis of biological microstructures (viz. dental enamel) allows us to understand the basis of their excellent mechanical properties. Prior efforts have successfully replicated these microstructures via single particle tracking, but the process is computationally and labor intensive. In this work, optical flow imaging algorithms were used to extract full-field microstructural distribution of enamel rods from synchrotron X-ray computed tomography datasets, and a field method was used to reconstruct the growth of individual rods. Such high throughput information allows for the rapid production/prototyping and advanced manufacturing of damage-tolerant bioinspired structures for specific engineering applications. Furthermore, the algorithms used herein are freely available and open source to broaden the availability of the proposed workflow to the general scientific community.


Assuntos
Esmalte Dentário , Síncrotrons , Esmalte Dentário/química , Esmalte Dentário/diagnóstico por imagem , Animais , Microtomografia por Raio-X , Reologia , Imagem Óptica/métodos
2.
Acta Biomater ; 178: 208-220, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428512

RESUMO

The enamel of mammalian teeth is a highly mineralized tissue that must endure a lifetime of cyclic contact and is inspiring the development of next-generation engineering materials. Attempts to implement enamel-inspired structures in synthetic materials have had limited success, largely due to the absence of a detailed understanding of its microstructure. The present work used synchrotron phase-contrast microCT imaging to evaluate the three-dimensional microstructure of enamel from four mammals including Lion, Gray Wolf, Snow Leopard, and Black Bear. Quantitative results of image analysis revealed that the decussation pattern of enamel consists of discrete diazone (D) and parazone (P) bands of rods organized with stacking arrangement of D+/P/D-/P in all mammals evaluated; the D+ and D- refer to distinct diazone bands with juxtaposed rod orientations from the reference plane. Furthermore, the rod orientations in the bands can be described in terms of two principal angles, defined here as the pitch and yaw. While the pitch angle increases from the outer enamel to a maximum (up to ≈ 40°) near the dentin enamel junction, minimal spatial variations are observed in yaw across the enamel thickness. There are clear differences in the decussation parameters of enamel across species that are interpreted here with respect to the structural demands placed on their teeth. The rod pitch and band width of enamel are identified as important design parameters and appear to be correlated with the bite force quotient of the four mammals evaluated. STATEMENT OF SIGNIFICANCE: The multi-functionality of tooth enamel requires both hardness and resistance to fracture, properties that are generally mutually exclusive. Ubiquitous to all mammalian teeth, the enamel is expected to have undergone adaptations in microstructure to accommodate the differences in diet, body size and bite force across animals. For the first time, we compare the complex three-dimensional microstructure of enamel from teeth of multiple mammalian species using synchrotron micro-computed tomography. The findings provide new understanding of the "design" of mammalian enamel microstructures, as well as how specific parameters associated with the decussation of rods appear to be engineered to modulate its fracture resistance.


Assuntos
Síncrotrons , Dente , Animais , Microtomografia por Raio-X , Mamíferos , Esmalte Dentário/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...