Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 55 Suppl: OL1138-50, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19656467

RESUMO

It has been suggested that overexpression of neuronal Ca2+ sensor-1 (NCS-1) protein is implicated in the pathophysiology of neurodisorders such as schizophrenia, bipolar disturbance and X-linked mental retardation. The mechanism by which NCS-1 would be involved in the causes and/or consequences of these neurodisorders is still far from elucidation. Independent evidence has pointed NCS-1 as a key regulator of synaptic efficacy by altering the expression and activity of voltage-gated channels, inhibiting internalization of dopaminergic receptors, and altering phosphoinositide metabolism. In this study, we examined the possible participation of NCS-1 protein in signal transmission dependent on muscarinic receptor activation, using PC12 cells stably expressing NCS-1 (PC12-NCS-1). Carbachol (CCH; 300 microM) was able to evoke glutamate release more efficiently from PC12-NCS-1 (15.3+/-1.0nmol/mg of protein) than wild type cells (PC12-wt; 8.3+/-0.9nmol/mg of protein). This increase of glutamate release induced by CCH was independent on extracellular Ca2+ influx. Additionally, a larger increase of cytoplasmic levels of InsP3 (663.0+/-63.0 and 310.0+/-39.0% of fluorescence in A.U.) and [Ca2+]i (766.4+/-40.0 and 687.8+/-37.1nmol/L) was observed after CCH stimulus of PC12-NCS-1 compared with PC12-wt. Clearly distinction between intracellular Ca2+ dynamics was also observed in PC12-NCS-1 and PC12-wt. A larger increase followed by fast decay of [Ca2+]i was observed in PC12-NCS-1. A plateau with a delayed decay of [Ca2+]i was characteristic of PC12-wt [Ca2+]i response. Both enhancement of InsP3 production and glutamate release observed in PC12-NCS-1 were blocked by atropine (10 microM). Together, our data show that overexpression of NCS-1 in PC12 cells induces an enhancement of intracellular second messenger and transmitter release dependent on CCH response, suggesting that muscarinic signaling is "up-regulated" in this cell model.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas Sensoras de Cálcio Neuronal/fisiologia , Neuropeptídeos/fisiologia , Receptores Muscarínicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Carbacol/farmacologia , Quelantes/farmacologia , Agonistas Colinérgicos/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células PC12 , Transporte Proteico/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...