Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33378253

RESUMO

Wastewater reuse has been widely discussed as an essential strategy to minimize the consumption of drinking water for less noble purposes. During biological wastewater treatment, organic matter is converted into a complex matrix containing a variety of soluble organic compounds. The objective of the present study was to evaluate the removal efficiency of the residual organic load in the final effluent from wastewater treatment plant with a conventional activated sludge process by different coagulants and parameters of coagulation-flocculation process, using dissolved organic carbon (DOC) concentration, molecular weight (MW) size distribution by size exclusion chromatography (SEC) coupled to mass spectrometry (MS), and zeta potential (ZP) analyses. The results showed a DOC removal efficiency up to 45% with iron chloride, and of 38% for aluminum sulfate and 31% for PAC coagulants. ZP was also measured during the procedures and authors conclude that the ZP also does not have a determining role in these removals. SEC and MS assessment was able to detect changes on secondary effluent molecular weight distribution profile after effluent coagulation-flocculation, this technique might be a promising tool to understand the composition of effluent organic matter and be helpful to estimate and optimize the performance of wastewater effluents treatment processes.


Assuntos
Floculação , Compostos Orgânicos/análise , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Compostos de Alúmen/química , Análise da Demanda Biológica de Oxigênio , Solubilidade
2.
Water Environ Res ; 93(6): 896-905, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33176037

RESUMO

Aerobic granular sludge (AGS) has been considered a breakthrough in the wastewater treatment sector given its key characteristics, such as excellent settleability, simultaneous removal of organic and nutrient pollutants, and compactness. However, the formation of granules often delays the start-up of granular-based systems, especially in large-scale settings. This study addressed the start-up of a pilot-scale AGS sequencing batch reactor (SBR) treating domestic sewage, monitored for over 280 days. The challenges faced during aerobic granulation using a mixture of activated sludge and anaerobic granular sludge as inoculum and the performance of the reactor on organic matter, nitrogen, and phosphorus removal were discussed. Results showed that robust and stable granules were formed after an initial period of around six months, with the settling time playing a key role on granules development. At least 80% of granules had a diameter greater than 0.2 mm and 60% >1 mm. In general, the reactor achieved high nitrogen removal efficiency, as well as satisfactory removal of soluble COD. However, total COD abatement was impaired by the various episodes of suspended solids loss with the effluent. Overall, this study demonstrated that the reactor was efficient in the treatment of domestic sewage, but its performance was adversely affected from sudden changes in the influent quality. PRACTITIONER POINTS: Aerobic granular sludge (AGS) applied to small-scale domestic sewage treatment. The control of sludge age in AGS can be a problem due to short sedimentation times. High DO to maintain aerobic granulation can economically make the process economically unfeasible in tropical countries. A sludge with excellent sedimentation properties was obtained. However, maintaining the granule over time is a challenge.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...