Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Inflamm Res ; 68(10): 845-855, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31218444

RESUMO

INTRODUCTION: Carboxypeptidase M (CPM) is a glycosylphosphatidylinositol anchored enzyme that plays an important role in the kallikrein-kinin system (KKS). CPM catalytic domain hydrolyzes Arg from C-terminal peptides (i.e., bradykinin and kallidin), generating des-Arg-kinins, the agonists of B1 receptor (B1R). It is known that CPM and kinin B1R are co-localized in the plasma membrane microdomains, where they interact with each other, facilitating receptor signaling. AIMS: We hypothesized here that this CPM-B1R interaction could also affect the activity of the enzyme. METHODS: Thus, in this work, we evaluated the impact of B1R presence or absence on CPM activity and expression, using primary culture of microvascular endothelial cells from wild-type, kinin B1R knockout mice (B 1 -/- ), and transgenic rats overexpressing B1 receptor exclusively in the endothelium. In addition, HEK293T cells, as wells as B 1 -/- primary culture of endothelial cells, both transfected with B1R, were also used. RESULTS: CPM expression and activity were downregulated in cells of knockout mice compared to control and this reduction was rescued after B1R transfection. Cells overexpressing B1R presented higher levels of CPM mRNA, protein, and activity. This profile was reverted by pre-incubation with the B1R antagonist, R715, in highly expressing receptor cells. CONCLUSIONS: Our data show that kinin B1R positively modulates both CPM expression and activity, suggesting that CPM-B1R interaction in membrane microdomains might affect enzyme activity, beyond interfering in receptors signaling. This work highlights the interactions among different components of KKS and contributes to a better understanding of its patho-physiological role.


Assuntos
Células Endoteliais/metabolismo , Metaloendopeptidases/metabolismo , Receptor B1 da Bradicinina/metabolismo , Animais , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Pulmão/citologia , Metaloendopeptidases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Ratos Transgênicos , Receptor B1 da Bradicinina/genética
2.
PLoS One ; 11(12): e0165371, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992423

RESUMO

BACKGROUND: The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. AIM: Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. RESULTS: We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the ß3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. CONCLUSION: ACE activation regulates melanoma cell proliferation and migration.


Assuntos
Angiotensina II/metabolismo , Núcleo Celular/metabolismo , Melanoma/enzimologia , Peptidil Dipeptidase A/metabolismo , Fosfolipase C beta/metabolismo , Vinculina/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Cricetulus , Humanos , Lisinopril/farmacologia , Melanoma/genética , Melanoma/metabolismo , Peptidil Dipeptidase A/genética , Transporte Proteico
3.
Int Immunopharmacol ; 8(2): 247-53, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18182235

RESUMO

Obesity is considered a worldwide public health problem showing an increased prevalence in developing countries, with urgent need for new and more efficient drugs and therapies. Enalapril, an angiotensin-I converting enzyme inhibitor (ACEi), is classically used in anti-hypertensive therapies, however, earlier publications have shown that this drug could also have significant impact on body weight in rats as well as in humans, besides reducing blood pressure. The effect of this drug in the white adipose tissue has been neglected for long time, even considering that most components of the renin-angiotensin and kallikrein-kinin system are expressed in this tissue. Furthermore, the adipose tissue is considered today as one of the most important sites for endocrine/inflammatory regulation of appetite and energy output and AngII has been linked to the metabolism in this tissue. Therefore, we analyzed the influence of chronic enalapril treatment in normotensive rats at earlier ages, evaluating body weight, energy homeostasis, lipid profile and serum levels of the hormones leptin and insulin, in the presence of a standard or a palatable hyperlipidic diet regimen for one month. Our results show that enalapril treatment is able to reduce body fat on both diets, without alteration in serum lipid profile. Furthermore, animals receiving enalapril showed reduction in food intake, leptin level and energy intake. In summary, these findings show for the first time that the ACEi enalapril reduces body fat in young normotensive rats and highlights a novel target to treat obesity and associated diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Enalapril/farmacologia , Animais , Ingestão de Energia , Leptina/sangue , Lipídeos/sangue , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...