Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39204653

RESUMO

Most soybean producers in the Cerrado biome use the direct seeding system, making it essential to cultivate cash or cover crops in the off-season, to promote soil protection, as well as increase organic matter, which is directly related to improvements in the chemical and physical characteristics of these soils. In this sense, this work was conducted in Jataí, state of Goias, Brazil, to evaluate the physical-chemical attributes of the soil and the performance of soybeans cultivated in different crop succession systems cultivated for 6 years in the region of Jataí, GO. The experimental design was randomized blocks with four plots and four replications; the crops that followed soybeans were arranged as follows: T1-corn (Zea mays); T2-pearl millet (Pennisetum glaucum); T3-Urochloa ruziziensis; and T4-corn + Urochloa ruziziensis. Soybean yield components and grain yield were evaluated in two harvests (2020/2021 and 2021/2022). Deformed and undisturbed soil samples were collected in 2022 to assess soil fertility and for physical analysis. The data were subjected to analysis of variance (F test) and the means were compared using the Tukey test at 5% probability. The soybean-millet succession system stood out for the chemical and physical attributes of the soil: calcium, magnesium, base saturation, hydrogen + aluminum, and total porosity. The crop succession system did not affect yield for the two years analyzed, but the accumulated grain yields were higher in the crop succession soybean/corn intercropped. The results highlight the importance of using cover crops in improving the physical and chemical qualities of the soil in the long term. However, in the Cerrado, there is a predominance of the soybean/corn succession system motivated by financial issues to the detriment of the qualitative aspects of the soil, in which the introduction of Urochloa ruziziensis in intercropping with corn would improve the chemical attributes of the soil and have a long-term impact on the accumulated grain production.

2.
PLoS One ; 11(12): e0167564, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959897

RESUMO

Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil's physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming.


Assuntos
Produção Agrícola , Solo/química , Clima Tropical , Sulfato de Cálcio/análise , Carbono/análise , Caulim/análise , Magnésio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA