Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 11(3): e12015, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33934521

RESUMO

BACKGROUND: Information about airborne pollen concentrations is required by a range of end users, particularly from the health sector who use both observations and forecasts to diagnose and treat allergic patients. Manual methods are the standard for such measurements but, despite the range of pollen taxa that can be identified, these techniques suffer from a range of drawbacks. This includes being available at low temporal resolution (usually daily averages) and with a delay (usually 3-9 days from the measurement). Recent technological developments have made possible automatic pollen measurements, which are available at high temporal resolution and in real time, although currently only scattered in a few locations across Europe. MATERIALS & METHODS: To promote the development of an extensive network across Europe and to ensure that this network will respond to end user needs, a stakeholder workshop was organised under the auspices of the EUMETNET AutoPollen Programme. Participants discussed requirements for the groups they represented, ranging from the need for information at various spatial scales, at high temporal resolution, and for targeted services to be developed. RESULTS: The provision of real-time information is likely to lead to a notable decrease in the direct and indirect health costs associated with allergy in Europe, currently estimated between €50-150 billion/year.1 DISCUSSION & CONCLUSION: A European measurement network to meet end user requirements would thus more than pay for itself in terms of potential annual savings and provide significant impetus to research across a range of disciplines from climate science and public health to agriculture and environmental management.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32872373

RESUMO

Background: The monitoring of bioaerosol concentrations in the air is a relevant endeavor due to potential health risks associated with exposure to such particles and in the understanding of their role in climate. In this context, the atmospheric concentrations of bacteria were measured from January 2018 to May 2020 at Saclay, France. The aim of the study was to understand the seasonality, the daily variability, and to identify the geographical origin of airborne bacteria. Methods: 880 samples were collected daily on polycarbonate filters, extracted with purified water, and analyzed using the cultivable method and flow cytometry. A source receptor model was used to identify the origin of bacteria. Results: A tri-modal seasonality was identified with the highest concentrations early in spring and over the summer season with the lowest during the winter season. Extreme changes occurred daily due to rapid changes in meteorological conditions and shifts from clean air masses to polluted ones. Conclusion: Our work points toward bacterial concentrations originating from specific seasonal-geographical ecosystems. During pollution events, bacteria appear to rise from dense urban areas or are transported long distances from their sources. This key finding should drive future actions to better control the dispersion of potential pathogens in the air, like persistent microorganisms originating from contaminated areas.


Assuntos
Poluentes Atmosféricos , Bactérias , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Ecossistema , França , Estações do Ano
3.
Environ Sci Pollut Res Int ; 25(26): 26653-26668, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30003484

RESUMO

Southeast Asia is a hotspot of anthropogenic emissions where episodes of recurrent and prolonged atmospheric pollution can lead to the formation of large haze events, giving rise to wide plumes which spread over adjacent oceans and neighbouring countries. Trace metal concentrations and Pb isotopic ratios in atmospheric particulate matter < 10 µm (PM10) were used to track the origins and the transport pathways of atmospheric pollutants. This approach was used for fortnightly PM10 collections over a complete annual cycle in Haiphong, northern Vietnam. Distinct seasonal patterns were observed for the trace metal concentration in PM10, with a maximum during the Northeast (NE) monsoon and a minimum during the Southeast (SE) monsoon. Some elements (As, Cd, Mn) were found in excess according to the World Health Organization guidelines. Coal combustion was highlighted with enrichment factors of As, Cd, Se, and Sb, but these inputs were outdistanced by other anthropogenic activities. V/Ni and Cu/Sb ratios were found to be markers of oil combustion, while Pb/Cd and Zn/Pb ratios were found to be markers of industrial activities. Pb isotopic composition in PM10 revealed an important contribution of soil dusts (45-60%). In PM10, the Pb fraction due to oil combustion was correlated with dominant airflow pathways (31% during the north-easterlies and 20% during the south-easterlies), and the Pb fraction resulting from industrial emissions was stable (around 28%) throughout the year. During the SE monsoon, Pb inputs were mainly attributed to resuspension of local soil dusts (about 90%), and during the NE monsoon, the increase of Pb inPM10 was due to the mixing of local and regional inputs.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Chumbo/administração & dosagem , Metaloides/análise , Metais Pesados/análise , Material Particulado/análise , Atmosfera/química , Indústrias , Isótopos/análise , Oceanos e Mares , Tamanho da Partícula , Vietnã
4.
Environ Sci Technol ; 52(9): 5407-5416, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649864

RESUMO

Mercury (Hg) isotopic compositions in hair and dietary sources from Wanshan (WS) Hg mining area, Guiyang (GY) urban area, and Changshun (CS) rural area were determined to identify the major Hg exposure sources of local residents. Rice and vegetables displayed low δ202Hg and small negative to zero Δ199Hg, and are isotopically distinguishable from fish which showed relatively higher δ202Hg and positive Δ199Hg. Distinct isotopic signatures were also observed for human hair from the three areas. Shifts of 2 to 3‰ in δ202Hg between hair and dietary sources confirmed mass dependent fractionation of Hg isotopes occurs during metabolic processes. Near zero Δ199Hg of hair from WS and CS suggested rice is the major exposure source. Positive Δ199Hg of hair from GY was likely caused by consumption of fish. A binary mixing model based on Δ199Hg showed that rice and fish consumption accounted for 59% and 41% of dietary Hg source for GY residents, respectively, whereas rice is the major source for WS and CS residents. The model output was validated by calculation of probable daily intake of Hg. Our study suggests that Hg isotopes can be a useful tracer for quantifying exposure sources and understanding metabolic processes of Hg in humans.


Assuntos
Monitoramento Ambiental , Mercúrio , Animais , China , Humanos , Isótopos de Mercúrio , Mineração
5.
Sci Total Environ ; 612: 238-246, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28850843

RESUMO

Very fine particles (VFPs, PM0.25) are able to travel deeply into the respiratory tract and can produce adverse health effects, especially to children. Information on the VFPs in schools is generally lacking. We investigated the chemical compositions, sources and health risks of VFPs in a junior secondary school of Xi'an, China, during May 16th to 30th, 2012. The results showed that organic matter (37% and 39%), SO42- (13% and 11%) and geological material (20% and 24%) were the major components of VFPs both outdoors and indoors. The VFP species indoors, such as SO42- and elemental carbon, are mainly from outdoor origins, e.g. coal burning and traffic emissions. But particle resuspension by student activities, chalk dust and import from outdoors of soil dust also contributed to deteriorate air quality in the classroom. By contrast to outdoors, several indoor factors, like higher room temperature, limited volume and longer suspension time of classroom particles, can even lead to significant secondary pollutant production. Heavy metals (mainly from outside) bound to indoor VFPs are supposedly associated to non-cancer health risks, especially Pb through ingestion pathway and Mn through dermal contact. Outdoor VFPs may be associated to PAHs cancer health risks via inhalation way. This study confirms that both indoor and outdoor sources had contributions to indoor VFPs, and that VFPs health risk should be of higher concern in urban areas of Northwestern China.

6.
Environ Geochem Health ; 40(2): 849-863, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29019007

RESUMO

Air pollutant measurement and respiratory inflammatory tests were conducted at a junior secondary school in Xi'an, Northwestern China. Hazardous substances including particulate matters (PMs), black carbon (BC) and particle-bounded polycyclic aromatic hydrocarbons (PAHs) were quantified both indoors and outdoors of the school. Source characterization with organic tracers and particle-size distribution demonstrated that the school's air was mostly polluted by combustion emissions from the surrounding environment. The evaluation of health assessment related to air quality was conducted by two methods, including potential risk estimation of air pollutants and direct respiratory inflammatory test. The incremental lifetime cancer risks associated with PAHs were estimated and were 1.62 × 10-6 and 2.34 × 10-6, respectively, for indoor and outdoor fine PMs. Both the values exceeded the threshold value of 1 × 10-6, demonstrating that the carcinogenic PAHs are a health threat to the students. Respiratory inflammatory responses of 50 students who studied in the sample classroom were examined with a fractional exhaled nitric oxide (FeNO) test, with the aid of health questionnaires. The average FeNO concentration was 17.4 ± 8.5 ppb, which was slightly lower than the recommended level of 20 ppb established by the American Thoracic Society for children. However, a wide distribution and 6% of the values were > 35 ppb, suggesting that the potentials were still high for eosinophilic inflammation and responsiveness to corticosteroids. A preliminary interpretation of the relationship between air toxins and respiratory inflammatory response demonstrated the high exposure cancer risks and inflammatory responses of the students to PMs in the city.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Material Particulado/análise , Pneumonia/induzido quimicamente , Saúde da População , Instituições Acadêmicas , Adolescente , Corticosteroides/uso terapêutico , Testes Respiratórios , Dióxido de Carbono/análise , Carcinógenos/análise , Carcinógenos/toxicidade , Criança , China , Eosinófilos/citologia , Feminino , Humanos , Masculino , Neoplasias/induzido quimicamente , Óxido Nítrico/análise , Material Particulado/toxicidade , Pneumonia/tratamento farmacológico , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Fuligem/análise , Fuligem/toxicidade , Inquéritos e Questionários
7.
Environ Pollut ; 231(Pt 2): 1330-1343, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28923340

RESUMO

Seasonal variation and spatial distribution of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2nd-3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t < 0.05) with those in urban residential in both seasons. The positive Matrix Factorization (PMF) modeling indicated that biomass burning (31.1%) and vehicle emissions (35.9%) were main sources for PAHs in winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição do Ar/estatística & dados numéricos , China , Cidades , Carvão Mineral/análise , Estações do Ano , Emissões de Veículos/análise
8.
Environ Sci Technol ; 51(7): 3759-3766, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28253613

RESUMO

We present a 3-year time series of lead (Pb) and mercury (Hg) concentrations and isotope signatures in total suspended particulate (TSP) matter and as total gaseous Hg (TGM) in Xi'an, Northwestern China. Mean concentrations of TSP (299 ± 120 µg m-3), PbTSP (0.33 ± 0.15 µg m-3) and HgTSP (0.64 ± 0.54 ng m-3), and TGM (5.7 ± 2.7 ng m-3) were elevated. We find that atmospheric Pb levels in winter in Xi'an have decreased by 4.6% per year since 2003, yet remain elevated relative to air quality guidelines and therefore a major health concern. δ202HgTSP and Δ199HgTSP averaged -0.80 ± 0.30‰ (1σ) and -0.02 ± 0.10‰ (1σ) and δ202HgTGM and Δ199HgTGM averaged -0.08 ± 0.41‰ (1σ) and 0.00 ± 0.04‰ (1σ). Relative to raw coal from Shaanxi and surrounding provinces, δ202HgTSP is enriched in the light Hg isotopes, whereas δ202HgTGM is enriched in the heavy isotopes. TSP and TGM Δ199Hg signatures are indistinguishable from raw coal, indicating little photochemical mass independent fractionation of atmospheric Hg in the near-field urban-industrial environment. δ202HgTGM correlates significantly with TGM levels (r2 = 0.3, p < 0.01) and likely reflects binary mixing of local industrial TGM emissions with global background TGM.


Assuntos
Chumbo , Estações do Ano , Poluentes Atmosféricos , China , Carvão Mineral , Monitoramento Ambiental , Isótopos , Mercúrio , Isótopos de Mercúrio
9.
Sci Rep ; 7: 41132, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117355

RESUMO

This study presents the first long term (10-year period, 2004-2013) datasets of PM2.5-bound nickel (Ni) concentration obtained from the daily sample in urban of Xi'an, Northwestern China. The Ni concentration trend, pollution sources, and the potential health risks associated to Ni were investigated. The Ni concentrations increased from 2004 to 2008, but then decreased due to coal consumption reduction, energy structure reconstruction, tighter emission rules and the improvement of the industrial and motor vehicle waste control techniques. With the comparison of distributions between workday and non-workday periods, the effectiveness of local and regional air pollution control policies and contributions of hypothetical Ni sources (industrial and automobile exhausts) were evaluated, demonstrating the health benefits to the populations during the ten years. Mean Ni cancer risk was higher than the threshold value of 10-6, suggesting that carcinogenic Ni still was a concern to the residents. Our findings conclude that there are still needs to establish more strict strategies and guidelines for atmospheric Ni in our living area, assisting to balance the relationship between economic growth and environmental conservation in China.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Adolescente , Adulto , Idoso , Poluentes Atmosféricos/efeitos adversos , Criança , Pré-Escolar , China , Monitoramento Ambiental , Humanos , Lactente , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Material Particulado/efeitos adversos , Risco , Adulto Jovem
10.
Environ Monit Assess ; 188(12): 691, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27888423

RESUMO

In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.


Assuntos
Agricultura , Monitoramento Ambiental/métodos , Agricultura/tendências , Cidades , Irã (Geográfico) , Análise Espaço-Temporal
11.
Environ Pollut ; 218: 1065-1073, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27577984

RESUMO

Spatial variability of polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matter (PM2.5) was investigated in Xi'an, China, in summer of 2013. Sixteen priority PAHs were quantified in 24-h integrated air samples collected simultaneously at nine urban and suburban communities. The total quantified PAHs mass concentrations ranged from 32.4 to 104.7 ng m-3, with an average value of 57.1 ± 23.0 ng m-3. PAHs were observed higher concentrations at suburban communities (average: 86.3 ng m-3) than at urban ones (average: 48.8 ng m-3) due to a better enforcement of the pollution control policies at the urban scale, and meanwhile the disorganized management of motor vehicles and massive building constructions in the suburbs. Elevated PAH levels were observed in the industrialized regions (west and northwest of Xi'an) from Kriging interpolation analysis. Satellite-based visual interpretations of land use were also applied for the supporting the spatial distribution of PAHs among the communities. The average benzo[a]pyrene-equivalent toxicity (Σ[BaP]eq) at the nine communities was 6.9 ± 2.2 ng m-3 during the sampling period, showing a generally similar spatial distribution to PAHs levels. On average, the excess inhalation lifetime cancer risk derived from Σ[BaP]eq indicated that eight persons per million of community residents would develop cancer due to PM2.5-bound PAHs exposure in Xi'an. The great in-city spatial variability of PAHs confirmed the importance of multiple points sampling to conduct exposure health risk assessment.


Assuntos
Poluentes Atmosféricos/análise , Neoplasias/etiologia , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar , China/epidemiologia , Cidades , Humanos , Neoplasias/epidemiologia , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Fatores de Risco , Estações do Ano
12.
Environ Sci Technol ; 50(17): 9262-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27485289

RESUMO

The isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg. The linear regression resulting from the scatter plot relating the δ(202)Hg to Δ(199)Hg data in the TGM samples indicates distinct anthropogenic or natural influences at the three study sites. A similar trend was also observed for Hg accumulated in broadleaved deciduous forest foliage grown in areas influenced by anthropogenic emissions. The relatively negative MIF in litter-bound Hg compared to TGM is likely a result of the photochemical reactions of Hg(2+) in foliage. This study demonstrates the diagnostic stable Hg isotopic composition characteristics for separating atmospheric Hg of different source origins in China and provides the isotopic fractionation clues for the study of Hg bioaccumulation.


Assuntos
Isótopos de Mercúrio , Mercúrio , Fracionamento Químico , China , Monitoramento Ambiental , Isótopos
13.
Environ Geochem Health ; 37(5): 801-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25503684

RESUMO

Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Tamanho da Partícula , Material Particulado/análise , China , Cidades , Monitoramento Ambiental , Local de Trabalho
14.
Environ Geochem Health ; 37(5): 861-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25537162

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) attached to particulate matter can affect respiratory health, especially the health of children, but information on the air quality in schools is generally lacking. This study investigated the PAH concentrations in a naturally ventilated classroom in Xi'an, China, from 16 to 31 May 2012. Particulate PAH concentrations were measured for samples collected on five-stage cascade impactors deployed inside the classroom and outside. PM2.5-bound PAH concentrations were 53.2 ng m(-3) indoors and 72.9 ng m(-3) outdoors. PAHs attached to very fine particles (VFPs) accounted for ~70% of the total PAHs. The PAH concentrations indoors were affected by the students' activities, cleaning, and smoking, while outdoors, the main sources were motor vehicle emissions and contaminated road dust. Particle-bound PAHs infiltrated the classroom through open windows, but the activities of the students and staff were also associated with an increase of PAHs attached to particles larger than 1.0 µm, most likely through resuspension. Cycles in the sources led to PAH concentrations 2-3 times higher on weekdays compared to weekends, both indoors and outdoors. PAH toxicity risks inside the classroom were substantially lower than those outdoors, and the highest risks were associated with VFPs.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Monitoramento Ambiental , Atividades Humanas , Tamanho da Partícula , Instituições Acadêmicas , Fumar , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...