Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 69(4): 1401-22, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17361362

RESUMO

Modelling studies of upper ocean phenomena, such as that of the spatial and temporal patchiness in plankton distributions, typically employ coupled biophysical models, with biology in each grid-cell represented by a plankton ecosystem model. It has not generally been considered what impact the choice of grid-cell ecosystem model, from the many developed in the literature, might have upon the results of such a study. We use the methods of synchronisation theory, which is concerned with ensembles of interacting oscillators, to address this question, considering the simplest possible case of a chain of identically represented interacting plankton grid-cells. It is shown that the ability of the system to exhibit stably homogeneous (fully synchronised) dynamics depends crucially upon the choice of biological model and number of grid-cells, with dynamics changing dramatically at a threshold strength of mixing between grid-cells. Consequently, for modelling studies of the ocean the resolution chosen, and therefore number of grid-cells used, could drastically alter the emergent features of the model. It is shown that chaotic ecosystem dynamics, in particular, should be used with care.


Assuntos
Ecossistema , Biologia Marinha , Modelos Biológicos , Plâncton/crescimento & desenvolvimento , Análise Numérica Assistida por Computador , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...