Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 74(12): 2889-2897, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997398

RESUMO

Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for volatile and semi-volatile compound removal from water bodies. In this study, the bacterial strains Paenibacillus etheri SH7T (CECT 8558), Agrobacterium sp. MS2 (CECT 8557) and Rhodococcus ruber strains A5 (CECT 8556), EE6 (CECT 8612) and EE1 (CECT 8555), previously isolated from fuel-contaminated sites, were tested for adherence on tubular semipermeable membranes in laboratory-scale systems designed for methyl tert-butyl ether (MTBE) bioremediation. Biofilm formation on the membrane surface was evaluated through observation by field-emission scanning electron microscope (FESEM) as well as the acute toxicity (as EC50) of the bacterial growth media. Moreover, extracellular polymeric substance (EPS) production for each strain under different MTBE concentrations was measured. Strains A5 and MS2 were biofilm producers and their adherence increased when the MTBE flowed through the inner tubular semipermeable membrane. No biofilm was formed by Paenibacillus etheri SH7T, nevertheless, the latter and strain MS2 exhibited the lowest toxicity after growth on the EMBFR. The results obtained from FESEM and toxicity analysis demonstrate that bacterial strains R. ruber EE6, A5, P. etheri SH7T and Agrobacterium sp. MS2 could be excellent candidates to be used as selective inocula in EMBFR technology for MTBE bioremediation.


Assuntos
Agrobacterium/fisiologia , Biofilmes , Éteres Metílicos/metabolismo , Paenibacillus/fisiologia , Rhodococcus/fisiologia , Biodegradação Ambiental , Meios de Cultura , Éteres Metílicos/toxicidade
2.
Biotechnol Prog ; 32(5): 1238-1245, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27253755

RESUMO

Among the strategies developed for contaminated groundwater bioremediation, those based on the use of bacteria adhering to inert supports and establishing biofilms have gained great importance in this field. Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for the removal of volatile and semi-volatile compounds. EMBFR technology is based on the use of extractive semipermeable membranes through which contaminants migrate to the biological compartment in which microorganisms with pollutant biotransformation and/or mineralization capacities can grow, forming an active biofilm on the membrane surface. The objective of this study was to assess the use of three bacterial strains (Paenibacillus sp. SH7 CECT 8558, Agrobacterium sp. MS2 CECT 8557, and Rhodococcus ruber EE6 CECT 8612), as inoculum in a lab-scale EMBFR running for 28 days under aerobic conditions to eliminate methyl tert-butyl ether (MTBE) from water samples. Three different hydraulic retention times (1, 6, and 12 h) were employed. MTBE degradation values were determined daily by a gas GC-MS technique, as well as suspended bacterial growth. The biofilm established by the bacterial strains on the semipermeable membrane was detected by Field-Emission Scanning Electron Microscopy (FESEM) at the end of each experiment. The acute toxicity of the treated effluents and biomedium was determined by Microtox© assay (EC50 ).The results achieved from the MTBE degradation, biofilm formation, and toxicity analysis indicated that bacterial strains MS2 and EE6 were the best options as selective inoculum, although further research is needed, particularly with regard to their possible use as a mixed culture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1238-1245, 2016.


Assuntos
Biofilmes/efeitos dos fármacos , Reatores Biológicos , Membranas Artificiais , Éteres Metílicos/farmacologia , Poluentes Químicos da Água/metabolismo , Agrobacterium/efeitos dos fármacos , Agrobacterium/crescimento & desenvolvimento , Paenibacillus/efeitos dos fármacos , Paenibacillus/crescimento & desenvolvimento , Rhodococcus/efeitos dos fármacos , Rhodococcus/crescimento & desenvolvimento
3.
Bioprocess Biosyst Eng ; 36(2): 173-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22767397

RESUMO

This study was on the technical and biological characteristics of a partial-SHARON submerged-filter bioreactor of 3 L. The main focus was the influence of the hydraulic retention time (HRT) on biofilms. For this purpose, we used molecular tools based on the partial 16S rRNA genes. The results showed that the HRT may affect the nitrification processes of a bioreactor using synthetic wastewater containing 600 mg/L of ammonia. It was found that an HRT of 0.5 day transformed 100 % of the ammonium into nitrite. However, when the HRT was decreased to 0.4 day, there was a significant reduction (35 %) in the quantity of ammonia transformed, which confirmed the complexity of the system operation. Moreover, a PCR-TGGE approach highlighted the differences observed. The results obtained showed that an HRT of 0.5 day reduced bacterial biodiversity in the biofilms, which were mainly formed by Nitrosomonas and Diaphorobacter. In contrast, an HRT of 0.4 day facilitated the formation of heterogeneous biofilms formed by nitrifying bacteria, such as Nitrosomonas sp., Nitrosospira sp., and Nitrosovibrio sp.).


Assuntos
Amônia/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Modelos Biológicos , Nitrosomonas/fisiologia , Águas Residuárias/microbiologia , Hidrodinâmica , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...