Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 111: 104193, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681397

RESUMO

Although the impact of nitrogen nutrition on the production of fermentative aromas in oenological fermentation is well known today, one may wonder whether the effects studied are the same when winemaking takes place at high turbidities, specifically for the production of wines intended for cognac distillation. To that effect, a fermentation robot was used to analyze 30 different fermentation conditions at two turbidity levels with several factors tested: (i) initial addition of nitrogen either organic (with a mixture of amino acids - MixAA) or inorganic with di-ammonium phosphate (DAP) at different concentrations, (ii) variation of the ratio of inorganic/organic nitrogen (MixAA and DAP) and (iii) addition of different single amino acids (alanine, arginine, aspartic acid and glutamic acid). A metabolomic analysis was carried out on all resulting wines to have a global vision of the impact of nitrogen on more than sixty aromatic molecules of various families. Then, at the end of the alcoholic fermentation, the wines were micro-distilled. A first interesting observation was that the aroma profiles of both wines and distillates were close, indicating that the concentration factor is rather similar for the different aromas studied. Secondly, the fermentation kinetics and aroma results have shown that the nitrogen concentration effect prevailed over the nature of nitrogen. Although the lipid concentration was in excess, an interaction between the assimilable nitrogen and lipid contents was still observed in wines or in micro-distillates. Alanine is involved in the synthesis of acetaldehyde, isobutanol, isoamyl alcohol and isoamyl acetate. Finally, it was demonstrated that modifying the ratio of assimilable nitrogen in musts is not an interesting technological response to improve the aromatic profile of wines and brandies. Indeed, unbalance the physiological ratio of the must by adding a single source of assimilable nitrogen (organic or inorganic) has been shown to deregulate the synthesis of most of the fermentation aromas produced by the yeast. Wine metabolomic analysis confirmed the results that had been observed in micro-distillates but also in the other aromatic families, especially on terpenes. The contribution of solid particles, but also yeast biosynthesis (via sterol management in must) to wine terpenes is discussed. Indeed, the synthesis of terpenes in this oenological context seems to be favored, especially since the concentration of assimilable nitrogen (in addition to the lipid content) favor their accumulation in the medium. A non-negligible vintage effect on the terpene profile was also demonstrated with variations in their distribution depending on the years. Thus, the present study focuses on the metabolism of wine yeasts under different environmental conditions (nitrogen and lipid content) and on the impact of distillation on the fate of flavor compounds. The results highlight once again the complexity of metabolic fluxes and of the impact of nitrogen source (nature and amount) and of lipids. Furthermore, this study demonstrates that beyond the varietal origin of terpenes, the part resulting from the de novo synthesis by the yeast during the fermentation cannot be neglected in the context of cognac winemaking with high levels of turbidity.


Assuntos
Vitis , Vinho , Humanos , Vinho/análise , Vitis/química , Saccharomyces cerevisiae/metabolismo , Nitrogênio/metabolismo , Odorantes/análise , Aminoácidos/metabolismo , Fermentação , Lipídeos , Terpenos/análise , Terpenos/metabolismo , Alanina/análise , Alanina/metabolismo
2.
Appl Microbiol Biotechnol ; 105(16-17): 6435-6449, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423410

RESUMO

In Cognac, the musts are rich in grape solids and fermentations are usually run with turbidities ranging between 500 and 1500 NTU (nephelometric turbidity unit). These conditions, considered favourable for generating the desired organoleptic profiles of the final Eaux-de-vies, are unusual in winemaking, and, consequently, their impact on yeast metabolism is poorly understood. This study aims to better describe and understand the synthesis of fermentative aromas in such lipid-excess conditions, while integrating the effect of two other very important parameters: the initial concentration of assimilable nitrogen and the temperature of fermentation. To reach this objective, a Box-Behnken design was implemented to describe and model the simple effects of these factors as well as their interactions. Although the lipid concentration was very high, impacts on the production of fermentative aromas were observed. Indeed, high lipid levels promoted the synthesis of higher alcohols. Observing this effect was surprising because there is no metabolic connection between the anabolic pathways of production of these alcohols and the lipid pathway. This effect may be partly explained by impairment in the activity of alcohol acetyl transferases in the presence of lipids, which catalyse the conversion of higher alcohols into the corresponding esters. Therefore, in this study, the negative impact of turbidity was very significant on acetate esters related to the production of acetyl-CoA, which was the main molecule disturbed by the strong presence of lipids. Finally, and more surprisingly, lipid intake did not impact the synthesis of ethyl esters, which depended on the concentration of exogenous lipids. KEY POINTS: • Innovative work on the fermentation of white wine musts with very high lipid contents. • Precise fermentation management and monitoring in Cognac-making conditions. • Experimental design to study the impact of lipids, assimilable nitrogen and temperature on fermentative aroma synthesis.


Assuntos
Vinho , Etanol , Fermentação , Lipídeos , Odorantes/análise , Vinho/análise
3.
Int J Mol Sci ; 20(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744144

RESUMO

In a context where climate change is threatening coffee productivity, the management of coffee leaf rust is a challenging issue. Major resistant genes, which have been used for many years, are systematically being overcome by pathogens. Developing healthy plants, able to defend themselves and be productive even when attacked by the pathogen, should be part of a more sustainable alternative approach. We compared one hybrid (GPFA124), selected for its good health in various environments including a reduced rust incidence, and the cv. 'Caturra', considered as a standard in terms of productivity and quality but highly susceptible to rust, for phenotypic variables and for the expression of genes involved in the circadian clock and in primary photosynthetic metabolism. The GPFA124 hybrid showed increased photosynthetic electron transport efficiency, better carbon partitioning, and higher chlorophyll content. A strong relationship exists between chlorophyll a fluorescence and the expression of genes related to the photosynthetic electron transport chain. We also showed an alteration of the amplitude of circadian clock genes in the clone. Our work also indicated that increased photosynthetic electron transport efficiency is related to the clone's better performance. Chlorophyll a fluorescence measurement is a good indicator of the coffee tree's physiological status for the breeder. We suggest a connection between the circadian clock and carbon metabolism in coffee tree.


Assuntos
Relógios Circadianos , Coffea/fisiologia , Fotossíntese , Carbono , Clorofila/metabolismo , Relógios Circadianos/genética , Transporte de Elétrons , Perfilação da Expressão Gênica , Vigor Híbrido/genética , Endogamia , Redes e Vias Metabólicas , Modelos Biológicos , Fotossíntese/genética , Melhoramento Vegetal , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...