Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808289

RESUMO

In a scanning electron microscope, the backscattered electron intensity modulations are at the origin of the contrast of like-Kikuchi bands and crystalline defects. The Electron Channeling Contrast Imaging (ECCI) technique is suited for defects characterization at a mesoscale with transmission electron microscopy-like resolution. In order to achieve a better comprehension of ECCI contrasts of twin-boundary and stacking fault, an original theoretical approach based on the dynamical diffraction theory is used. The calculated backscattered electron intensity is explicitly expressed as function of physical and practical parameters controlling the ECCI experiment. Our model allows, first, the study of the specimen thickness effect on the channeling contrast on a perfect crystal, and thus its effect on the formation of like-Kikuchi bands. Then, our theoretical approach is extended to an imperfect crystal containing a planar defect such as twin-boundary and stacking fault, clarifying the intensity oscillations observed in ECC micrographs.

2.
Materials (Basel) ; 13(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102172

RESUMO

AE44 alloys and nanolaminated Ti2AlC particle-reinforced AE44 magnesium composites were synthesized by stir casting techniques and textured by hot extrusion methods. It was found that lamellar Al11RE3 precipitates spheroidized with the introduction of Ti2AlC into the AE44 matrix. Both transmission electron microscope and planar disregistries calculations reveal a good match for interfacial lattice transition between Mg (0001) and the basal plane (0001) of Ti2AlC. This suggests that Ti2AlC is an efficient potent nucleating substrate for Mg, thus fertilizing the formation of strong interfacial bonds. After hot extrusion treatment, Ti2AlC particles were reoriented in the textured magnesium matrix, as confirmed by X-ray diffraction. This texture effect on the composite's mechanical properties was carefully studied by tensile and compressive tests.

3.
Materials (Basel) ; 12(15)2019 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382705

RESUMO

In this paper, we report the successful combination of macroscopic uniaxial tensile testing of bulk specimen combined with In situ dislocation-scale observations of the evolution of deformation microstructures during loading at several stress states. The dislocation-scale observations were performed by Accurate Electron Channeling Contrast Imaging in order to follow the defects evolution and their interactions with grain boundaries for several regions of interest during macroscopic loading. With this novel in situ procedure, the slip systems governing the deformation in polycrystalline bulk ß-Ti21S are tracked during the macroscopic uniaxial tensile test. For instance, curved slip lines that are associated with "pencil glide" phenomenon and tangled dislocation networks are evidenced.

4.
Materials (Basel) ; 12(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096602

RESUMO

Electron Channeling Contrast Imaging (ECCI) is becoming a powerful tool in materials science for characterizing deformation defects. Dislocations observed by ECCI in scanning electron microscope exhibit several features depending on the crystal orientation relative to the incident beam (white/black line on a dark/bright background). In order to bring new insights concerning these contrasts, we report an original theoretical approach based on the dynamical diffraction theory. Our calculations led, for the first time, to an explicit formulation of the back-scattered intensity as a function of various physical and practical parameters governing the experiment. Intensity profiles are modeled for dislocations parallel to the sample surface for different channeling conditions. All theoretical predictions are consistent with experimental results.

5.
Materials (Basel) ; 11(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461481

RESUMO

In this work, plastic deformation was locally introduced at room temperature by nanoindentation on a γ-TiAl-based alloy. Comprehensive analyses of microstructures were performed before and after deformation. In particular, the Burgers vectors, the line directions, and the mechanical twinning systems were studied via accurate electron channeling contrast imaging. Accommodation of the deformation are reported and a scenario is proposed. All features help to explain the poor ductility of the TiAl-based alloys at room temperature.

6.
Sci Rep ; 4: 6358, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25220949

RESUMO

Ti2AlN nanolayered ternary alloy has been plastically deformed under confining pressure at 900°C. The dislocation configurations of the deformed material have been analyzed by transmission electron microscopy. The results show a drastic evolution compared to the dislocation configurations observed in the Ti2AlN samples deformed at room temperature. In particular, they evidence out-of-basal-plane dislocations and interactions. Moreover numerous cross-slip events from basal plane to prismatic or pyramidal planes are observed. These original results are discussed in the context of the Brittle-to-Ductile Transition of the nanolayered ternary alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...