Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 83: 101-109, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079597

RESUMO

Engineering of extracellular vesicles (EVs) towards more efficient targeting and uptake to specific cells has large potentials for their application as therapeutics. Carbohydrates play key roles in various biological interactions and are essential for EV biology. The extent to which glycan modification of EVs can be achieved through genetic glycoengineering of their parental cells has not been explored yet. Here we introduce targeted glycan modification of EVs through cell-based glycoengineering via modification of various enzymes in the glycosylation machinery. In a "simple cell" strategy, we modified major glycosylation pathways by knocking-out (KO) essential genes for N-glycosylation (MGAT1), O-GalNAc glycosylation (C1GALT1C1), glycosphingolipids (B4GALT5/6), glycosaminoglycans (B4GALT7) and sialylation (GNE) involved in the elongation or biosynthesis of the glycans in HEK293F cells. The gene editing led to corresponding glycan changes on the cells as demonstrated by differential lectin staining. Small EVs (sEVs) isolated from the cells showed overall corresponding glycan changes, but also some unexpected differences to their parental cell including enrichment preference for certain glycan structures and absence of other glycan types. The genetic glycoengineering did not significantly impact sEVs production, size distribution, or syntenin-1 biomarker expression, while a clonal influence on sEVs production yields was observed. Our findings demonstrate the successful implementation of sEVs glycoengineering via genetic modification of the parental cell and a stable source for generation of glycoengineered sEVs. The utilization of glycoengineered sEVs offers a promising opportunity to study the role of glycosylation in EV biology, as well as to facilitate the optimization of sEVs for therapeutic purposes.

2.
N Biotechnol ; 80: 56-68, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38354946

RESUMO

Antibody phage-display technology identifies antibody-antigen interactions through multiple panning rounds, but traditional screening gives no information on enrichment or diversity throughout the process. This results in the loss of valuable binders. Next Generation Sequencing can overcome this problem. We introduce a high accuracy long-read sequencing method based on the recent Oxford Nanopore Technologies (ONT) Q20 + chemistry in combination with dual unique molecular identifiers (UMIs) and an optimized bioinformatic analysis pipeline to monitor the selections. We identified binders from two single-domain antibody libraries selected against a model protein. Traditional colony-picking was compared with our ONT-UMI method. ONT-UMI enabled monitoring of diversity and enrichment before and after each selection round. By combining phage antibody selections with ONT-UMIs, deep mining of output selections is possible. The approach provides an alternative to traditional screening, enabling diversity quantification after each selection round and rare binder recovery, even when the dominating binder was > 99% abundant. Moreover, it can give insights on binding motifs for further affinity maturation and specificity optimizations. Our results demonstrate a platform for future data guided selection strategies.


Assuntos
Bacteriófagos , Nanoporos , Técnicas de Visualização da Superfície Celular/métodos , Anticorpos , Tecnologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Br Dent J ; 227(5): 363-366, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31520032

RESUMO

The objective of this clinical case study is to illustrate the caries management four-step structured process, leading to personalised interventions specific for each individual patient's risks and needs, according to CariesCare International, derived from the International Caries Classification and Management System (ICCMS) for clinical practice. An 18-year-old female was diagnosed with higher caries risk at the individual level, and with several caries lesions at different severity stages, some likely active and others likely inactive. A care plan was co-created with the patient and delivered to obtain optimal health outcomes. Several issues pertinent to patient-centred care are discussed, including caries management at the individual and the tooth surface level, the preservation of tooth structure, patient's caries risk management, and prevention and control of caries lesions. The patient's perspective is taken into account and the health outcome focus of the system is highlighted.


Assuntos
Cárie Dentária , Adolescente , Consenso , Cárie Dentária/classificação , Cárie Dentária/terapia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA