Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(11): 5704-5780, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38666439

RESUMO

Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.

2.
Angew Chem Int Ed Engl ; 63(22): e202404058, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38528771

RESUMO

Ultrathin continuous metal-organic framework (MOF) membranes have the potential to achieve high gas permeance and selectivity simultaneously for otherwise difficult gas separations, but with few exceptions for zeolitic-imidazolate frameworks (ZIF) membranes, current methods cannot conveniently realize practical large-area fabrication. Here, we propose a ligand back diffusion-assisted bipolymer-directed metal ion distribution strategy for preparing large-area ultrathin MOF membranes on flexible polymeric support layers. The bipolymer directs metal ions to form a cross-linked two-dimensional (2D) network with a uniform distribution of metal ions on support layers. Ligand back diffusion controls the feed of ligand molecules available for nuclei formation, resulting in the continuous growth of large-area ultrathin MOF membranes. We report the practical fabrication of three representative defect-free MOF membranes with areas larger than 2,400 cm2 and ultrathin selective layers (50-130 nm), including ZIFs and carboxylate-linker MOFs. Among these, the ZIF-8 membrane displays high gas permeance of 3,979 GPU for C3H6, with good mixed gas selectivity (43.88 for C3H6/C3H8). To illustrate its scale-up practicality, MOF membranes were prepared and incorporated into spiral-wound membrane modules with an active area of 4,800 cm2. The ZIF-8 membrane module presents high gas permeance (3,930 GPU for C3H6) with acceptable ideal gas selectivity (37.45 for C3H6/C3H8).

3.
Small ; 20(24): e2310737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396324

RESUMO

Using powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbed SO 4 2 - ${\mathrm{SO}}_4^{2 - }$ ) confinement strategy is developed to integrate Ni3S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm-2 and 0.66 mA cm ECSA - 2 ${\mathrm{cm}}_{{\mathrm{ECSA}}}^{ - 2}$ under an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm-2 and a 400 h stability at 1.0 A cm-2.

4.
Small ; 20(22): e2308904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098304

RESUMO

High-salinity wastewater treatment is perceived as a global water resource recycling challenge that must be addressed to achieve zero discharge. Monovalent/divalent salt separation using membrane technology provides a promising strategy for sulfate removal from chlor-alkali brine. However, existing desalination membranes often show low water permeance and insufficient ion selectivity. Herein, an aminal-linked covalent organic framework (COF) membrane featuring a regular long-range pore size of 7 Å and achieving superior ion selectivity is reported, in which a uniform COF layer with subnanosized channels is assembled by the chemical splicing of 1,4-phthalaldehyde (TPA)-piperazine (PZ) COF through an amidation reaction with trimesoyl chloride (TMC). The chemically spliced TPA-PZ (sTPA-PZ) membrane maintains an inherent pore structure and exhibits a water permeance of 13.1 L m-2 h-1 bar-1, a Na2SO4 rejection of 99.1%, and a Cl-/SO4 2- separation factor of 66 for mixed-salt separation, which outperforms all state-of-the-art COF-based membranes reported. Furthermore, the single-stage treatment of NaCl/Na2SO4 mixed-salt separation achieves a high NaCl purity of above 95% and a recovery rate of ≈60%, offering great potential for industrial application in monovalent/divalent salt separation and wastewater resource utilization. Therefore, the aminal-linked COF membrane developed in this work provides a new research avenue for designing smart/advanced membrane materials for angstrom-scale separations.

5.
Adv Mater ; 35(48): e2307013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643466

RESUMO

Ultrathin membranes with ultrahigh permeance and good gas selectivity have the potential to greatly decrease separation process costs, but it requires the practical preparation of large area membranes for implementation. Metal-organic frameworks (MOFs) are very attractive for membrane gas separation applications. However, to date, the largest MOF membrane area reported in the literature is only about 100 cm2 . In the present study, a new step-nucleation in situ self-repair strategy is proposed that enables the preparation of large-area (2400 cm2 ) ultrathin and rollable MOF membranes deposited on an inexpensive flexible polymer membrane support layer for the first time, combining a polyvinyl alcohol (PVA)-metal-ion layer and a pure metal-ion layer. The main role of the pure metal-ion layer is to act as the main nucleation sites for MOF membrane growth, while the PVA-metal-ion layer acts as a slow-release metal-ion source, which supplements MOF crystal nucleation to repair any defects occurring. Membrane modules are necessary components for membrane applications, and spiral-wound modules are among the most common module formats that are widely applied in gas separation. A 4800 cm2 spiral-wound membrane module was successfully prepared, demonstrating the practical implementation of large-area MOF membranes.

6.
Small ; 19(43): e2302090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376859

RESUMO

Due to the sluggish kinetics of the oxygen reduction reaction (ORR) by non-Pt based catalyst, high loading of catalyst is required to achieve satisfactory fuel cell performance, which inevitably leads to the increase of the catalyst layer thickness with serious mass transport resistance. Herein, a defective zeolitic imidazolate framework (ZIF) derived Co/Fe-N-C catalyst with small mesopores (2-4 nm) and high density of CoFe atomic active sites are prepared by regulating the Fe dosage and pyrolysis temperature. Molecular dynamics simulation and electrochemical tests indicate that > 2 nm mesopores show insignificant influence on the diffusion process of O2 and H2 O molecules, leading to the high utilization of active sites and low mass transport resistance. The proton exchange membrane fuel cell (PEMFC) shows a high-power density of 755 mW cm-2 with only 1.5 mg cm-2 of non-Pt catalyst in the cathode. No apparent performance loss caused by concentration difference can be observed, in particular in the high current density region (1 A cm-2 ). This work emphasizes the importance of small mesopore design in the Co/Fe-N-C catalyst, which is anticipated to provide essential guidance for the application of non-Pt catalysts.

7.
Nat Mater ; 22(7): 888-894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169976

RESUMO

Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).


Assuntos
Gases , Estruturas Metalorgânicas , Peso Molecular , Polietilenoimina , Polímeros
8.
Angew Chem Int Ed Engl ; 62(28): e202304535, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37170008

RESUMO

Metal-organic framework (MOF) glass is an easy to process and self-supported amorphous material that is suitable for fabricating gas separation membranes. However, MOF glasses, such as ZIF-62 and ZIF-4 have low porosity, which makes it difficult to obtain membranes with high permeance. Here, a self-supported MOF crystal-glass composite (CGC) membrane was prepared by melt quenching a mixture of ZIF-62 as the membrane matrix and ZIF-8 as the filler. The conversion of ZIF-62 from crystal to glass and the simultaneous partial melting of ZIF-8 facilitated by the melt state of ZIF-62 make the CGC membrane monolithic, eliminating non-selective grain boundaries and improving selectivity. The thickness of CGC membrane can be adjusted to fabricate a membrane without the need of a support substrate. CGC membranes exhibit a C2 H6 permeance of 41 569 gas permeation units (GPU) and a C2 H6 /C2 H4 selectivity of 7.16. The CGC membrane has abundant pores from the glassy state of ZIF-62 and the crystalline ZIF-8, which enables high gas permeance. ZIF-8 has preferential adsorption for C2 H6 and promotes C2 H6 transport in the membrane, and thus the GCG membrane exhibits ultrahigh C2 H6 permeance and good C2 H6 /C2 H4 selectivity.

9.
Adv Sci (Weinh) ; 10(19): e2206062, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37162215

RESUMO

A Co-based zeolitic imidazolate framework (ZIF-67) derived catalyst with ultrafine CoPt nanoalloy particles is designed via a two-step space confinement method, to achieve a robust oxygen reduction reaction (ORR) performance for proton exchange membrane fuel cell (PEMFC). The core-shell structure of ZIF-67 (core) and SiO2 (shell) is carefully adjusted to inhibit the agglomeration of Co nanoparticles. In the subsequent adsorption-annealing process, the in situ formed graphene shell on the surface of Co nanoparticles further protects metal particles from coalescence, leading to the ultrafine CoPt nanoalloy (average diameter is 2.61 nm). Benefitting from the high utilization of Pt metal, the mass activity of CoPt nanoalloy catalyst reaches 681.8 mA mgPt -1 at 0.9 V versus RHE according to the rotating disk electrode test in 0.1 m HClO4 solution. The CoPt nanoalloy-based PEMFC provides a high maximum power density of 2.22 W cm-2 (H2 /O2 ) and 0.923 W cm-2 (H2 /air). Simultaneously, it shows good stability in the long-time dynamic test at low humidity, due to the robust CoPt@graphene core-shell nanostructure. This work provides a viable strategy for designing Pt-based nanoalloy catalysts with ultrafine metal particles and high stability.

10.
Environ Sci Technol ; 57(14): 5861-5871, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988386

RESUMO

Biomimetic ion permselective membranes with ultrahigh ion permeability and selectivity represent a research frontier in ion separation, yet the successful fabrication of such membranes remains a formidable challenge. Here, we demonstrate a 4-sulfocalix[4]arene (4-SCA)-modified graphene oxide (GO) membrane that shows extraordinary performance in separating mono-from multivalent cations, as well as having reversible pH-responsiveness. The resulting 4-SCA-modified GO (SCA-GO) membrane preferentially transports potassium ions (K+) over radionuclide cations (Co2+, UO22+, La3+, Eu3+, and Th4+). The ion selectivities are an order of magnitude higher than that of the unmodified GO membrane. Theoretical calculations and experimental investigations demonstrate that the much-improved ion selectivity arises from the specific recognition between 4-SCA and radionuclide cations. The transport of multivalent radionuclides is impeded by a binding-obstructing mechanism from the host-guest interactions. Interestingly, the host-guest interactions are responsive to the protonation/deprotonation transformation of the 4-SCA. Therefore, the SCA-GO membrane mimics pH-regulated ion selective behavior found in biological ion channels. Our strategy of designing a biomimetic permselective GO membrane may allow efficient nuclear wastewater treatment and, more importantly, deepen our understanding of biomimetic ion transport mechanisms.


Assuntos
Biomimética , Cátions
11.
Angew Chem Int Ed Engl ; 62(4): e202209306, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36395246

RESUMO

Covalent organic framework nanosheets (COF-NSs) are emerging building blocks for functional materials, and their scalable fabrication is highly desirable. Current synthetic methods suffer from low volume yields resulting from confined on-surface/at-interface growth space and complex multiple-phase synthesis systems. Herein, we report the synthesis of charged COF-NSs in open space using a single-phase organic solution system, achieving magnitudes higher volume yields of up to 18.7 mg mL-1 . Charge-induced electrostatic repulsion forces enable in-plane anisotropic secondary growth from initial discrete and disordered polymers into large and crystalline COF-NSs. The charged COF-NS colloidal suspensions are cast into thin and compact proton exchange membranes (PEMs) with lamellar morphology and oriented crystallinity, displaying outstanding proton conductivity, negligible dimensional swelling, and good H2 /O2 fuel cell performance.

12.
Small ; 18(35): e2202660, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927031

RESUMO

As a core component, the catalyst layer (CL) is widely used in fuel cell, metal-air battery, and other energy conversion devices. Herein, a highly efficient method for CL preparation via fast current-driven synthesis followed by pyrolysis is proposed. Compared with previously reported fabrication procedures of zeolite imidazolate frameworks (ZIF)-based CLs, this method directly deposits the ZIF precursor onto the conductive substrate in a very short time (≤15 min). The self-supporting CL, converted from ZIF membrane by simple single-step pyrolysis, is assembled with the gas diffusion layer to obtain cathode. Electrochemical tests exhibit a small potential gap (0.83 V) between the oxygen reduction and evolution reactions, as well as high performance and excellent stability for Zn-air battery (241 mW cm-2 at 390 mA cm-2 ), due to the unique design of a bi-continuous framework (interconnected pores and long carbon nanotubes) and Co-based active sites. This work may provide new directions for the fast fabrication of non-platinum group metal CLs for metal-air batteries or fuel cell applications.

13.
Nat Commun ; 13(1): 266, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017513

RESUMO

Rational design of high-performance stable metal-organic framework (MOF) membranes is challenging, especially for the sustainable treatment of hypersaline waters to address critical global environmental issues. Herein, a molecular-level intra-crystalline defect strategy combined with a selective layer thinning protocol is proposed to fabricate robust ultrathin missing-linker UiO-66 (ML-UiO-66) membrane to enable fast water permeation. Besides almost complete salt rejection, high and stable water flux is achieved even under long-term pervaporation operation in hash environments, which effectively addresses challenging stability issues. Then, detailed structural characterizations are employed to identify the type, chemical functionality, and density of intra-crystalline missing-linker defects. Moreover, molecular dynamics simulations shed light on the positive atomistic role of these defects, which are responsible for substantially enhancing structural hydrophilicity and enlarging pore window, consequently allowing ultra-fast water transport via a lower-energy-barrier pathway across three-dimensional sub-nanochannels during pervaporation. Unlike common unfavorable defect effects, the present positive intra-crystalline defect engineering concept at the molecular level is expected to pave a promising way toward not only rational design of next-generation MOF membranes with enhanced permeation performance, but additional water treatment applications.

14.
Angew Chem Int Ed Engl ; 60(52): 27078-27085, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34619005

RESUMO

Ionic covalent organic framework nanosheets (iCOFNs) with long-range ordered and mono-dispersed ionic groups hold great potential in many advanced applications. Considering the inherent drawbacks of oil-water biphase method, herein, we explore an oil-water-oil triphase method based on phase engineering strategy for the bottom-up synthesis of iCOFNs. The middle water phase serves as a confined reaction region, and the two oil phases are reservoirs for storing and supplying monomers to the water phase. A large aqueous space and low monomer concentration lead to the anisotropic gradual growth of iCOFNs into few-layer thickness, large lateral size, and high crystallinity. Notably, the resulting three cationic and anionic iCOFNs exhibit ultra-high aspect ratios of up to 20,000. We further demonstrate their application potential by processing into ultrathin defect-free COF membranes for efficient biogas separation. Our triphase method may offer an alternative platform technology for the synthesis and innovative applications of iCOFNs.

15.
Nature ; 595(7867): 361-369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262215

RESUMO

With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan's New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.

16.
Adv Sci (Weinh) ; 8(15): e2100284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032021

RESUMO

Anion exchange membrane fuel cells (AEMFCs) performance have significantly improved in the last decade (>1 W cm-2 ), and is now comparable with that of proton exchange membrane fuel cells (PEMFCs). At high current densities, issues in the catalyst layer (CL, composed of catalyst and ionomer), like oxygen transfer, water balance, and microstructural evolution, play important roles in the performance. In addition, CLs for AEMFCs have different requirements than for PEMFCs, such as chemical/physical stability, reaction mechanism, and mass transfer, because of different conductive media and pH environment. The anion exchange ionomer (AEI), which is the soluble or dispersed analogue of the anion exchange membrane (AEM), is required for hydroxide transport in the CL and is normally handled separately with the electrocatalyst during the electrode fabrication process. The importance of the AEI-catalyst interface in maximizing the utilization of electrocatalyst and fuel/oxygen transfer process must be carefully investigated. This review briefly covers new concepts in the complex AEMFC catalyst layer, before a detailed discussion on advances in CLs based on the design of AEIs and electrocatalysts. The importance of the structure-function relationship is highlighted with the aim of directing the further development of CLs for high-performance AEMFC.

17.
Nat Commun ; 12(1): 268, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431865

RESUMO

Carbon molecular sieve (CMS) membranes with rigid and uniform pore structures are ideal candidates for high temperature- and pressure-demanded separations, such as hydrogen purification from the steam methane reforming process. Here, we report a facile and scalable method for the fabrication of cellulose-based asymmetric carbon hollow fiber membranes (CHFMs) with ultramicropores of 3-4 Å for superior H2 separation. The membrane fabrication process does not require complex pretreatments to avoid pore collapse before the carbonization of cellulose precursors. A H2/CO2 selectivity of 83.9 at 130 °C (H2/N2 selectivity of >800, H2/CH4 selectivity of >5700) demonstrates that the membrane provides a precise cutoff to discriminate between small gas molecules (H2) and larger gas molecules. In addition, the membrane exhibits superior mixed gas separation performances combined with water vapor- and high pressure-resistant stability. The present approach for the fabrication of high-performance CMS membranes derived from cellulose precursors opens a new avenue for H2-related separations.

18.
Macromolecules ; 53(20): 8951-8959, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33132419

RESUMO

We report a side group modification strategy to tailor the structure of a polymer of intrinsic microporosity (PIM-1). PIM-1 with an average of ∼50% of the repeat units converted to tetrazole is prepared, and a subsequent reaction then introduces three types of pseudo-ionic liquid tetrazole-like structures (PIM-1-ILx). The presence of pseudo-ionic liquid functional groups in the PIM-1 structure increases gas selectivities for O2/N2 and CO2/N2, while it decreases pure-gas permeabilities. The overall gas separation performance of PIM-1-ILx is close to the 2008 Robeson upper bound. Since the tetrazoles are versatile groups for building a wide variety of ionic liquids, the modification method can be expanded to explore a broad spectrum of functional groups.

19.
Adv Sci (Weinh) ; 7(19): 2001398, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042752

RESUMO

Efficient olefin/paraffin separation is a grand challenge because of their similar molecular sizes and physical properties, and is also a priority in the modern chemical industry. Membrane separation technology has been demonstrated as a promising technology owing to its low energy consumption, mild operation conditions, tunability of membrane materials, as well as the integration of physical and chemical mechanisms. In this work, inspired by the physical mechanism of mass transport in channel proteins and the chemical mechanism of mass transport in carrier proteins, recent progress in channel-based and carrier-based membranes toward olefin/paraffin separations is summarized. Further, channel-based membranes are categorized into membranes with network structures and with framework structures according to the morphology of channels. The separation mechanisms, separation performance, and membrane stability in channel-based and carrier-based membranes are elaborated. Future perspectives toward membrane-based olefin/paraffin separation are proposed.

20.
Adv Mater ; 32(34): e2002165, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666633

RESUMO

Practical, ultrathin metal-organic framework (MOF) membranes have the potential to achieve otherwise difficult separations, but current fabrication methods still face challenges in the simultaneous improvement of both selectivity and permeance. Here, ultrathin, low-crystallinity-state MOF (LC-MOF) membranes are realized by a facile general method of interface layer polarization induction. This is achieved using an interface layer having metal ions with dense and uniform distribution, resulting in the creation of abundant open metal sites. Three types of LC-MOF membranes (45-150 nm) are fabricated, among which ZIF-8 membranes modified in situ with diethanolamine (DZIF-8) display the best performance for propylene/propane separation, showing unprecedented propylene permeance (2000-3000 Gas Permeance Units) with very high propylene/propane selectivity (90-120).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...