Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769305

RESUMO

Psoriasis is linked with unusual differentiation and hyperproliferation of epidermal keratinocytes that significantly impair the quality of life (QoL) of patients. The present treatment options only provide symptomatic relief and are surrounded by various adverse effects. Recently, nanostructured lipid carriers (NLCs) have emerged as next-generation nanocarriers with better physicochemical characteristics. The current manuscript provides background information on psoriasis, its pathophysiology, existing treatment options, and its limitations. It highlights the advantages, rationale, and mechanism of the permeation of NLCs for the treatment of psoriasis. It further gives a detailed account of various NLC nanoformulations for the treatment of psoriasis. In addition, tabular information is provided on the most relevant patents on NLCs for treating psoriasis. Lastly, light is shed on regulatory considerations related to NLC-like nanoformulations. In the treatment of psoriasis, NLCs display a sustained release drug profile, an ability to incorporate both hydrophobic and hydrophilic drugs, an enhancement in skin hydration, penetrability, retention, and bioavailability of the drug, along with reduced staining potential as compared to conventional ointments, and decreased side effects of drug molecules. This affirms the bright future of NLC nanoformulations in the treatment of psoriasis. However, academic industry collaboration and more sound regulatory controls are required to commercialize the NLC nanoformulations for psoriasis treatment.


Assuntos
Nanoestruturas , Psoríase , Humanos , Qualidade de Vida , Portadores de Fármacos/química , Pele/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Nanoestruturas/química , Lipídeos/química , Tamanho da Partícula , Liberação Controlada de Fármacos
2.
Int J Pharm ; 436(1-2): 418-25, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22814224

RESUMO

The present study investigates the ability of a polyelectrolyte complex, composed of O-carboxymethyl chitosan (O-CMC) and carbopol cross linked with calcium, as a pH-sensitive carrier for acid susceptible drugs. DSC studies were performed to confirm the formation of O-CMC-carbopol complex. Double endothermic peaks in thermogram of polyelectrolyte beads reflect the molecular changes brought in after cross-linking. FT-IR spectroscopy was used to reveal peak variation of the carboxylic groups as a function of pH 1.2 and pH 6.8. The formation of polyelectrolyte complex, on account of electrostatic interactions between the COO(-) group of carbopol and the NH(3)(+) group of O-CMC, was also confirmed by FT-IR studies. Swelling of the O-CMC-carbopol film showed a pH-dependent profile that was affected by calcium ion concentration. The swelling rate was more significant at intestinal pH because the ionization of carboxylic acid group on O-CMC and carbopol creates electrostatic repulsion. Release behavior of drug is relative to the viscosity of solution and the ionic interaction between O-CMC and carbopol. Mucous glycoprotein assay revealed that ionization of carboxylic group on the beads at intestinal pH formed a strong hydrogen bond with mucin, which was responsible for the prominent mucoadhesive property thus prolonging the intestinal residence time.


Assuntos
Resinas Acrílicas/química , Cálcio/química , Quitosana/análogos & derivados , Preparações de Ação Retardada/química , Portadores de Fármacos/química , 2-Piridinilmetilsulfinilbenzimidazóis/química , Animais , Varredura Diferencial de Calorimetria , Quitosana/química , Concentração de Íons de Hidrogênio , Mucosa Intestinal/química , Masculino , Mucinas/química , Polivinil/química , Rabeprazol , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...