Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123447, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278401

RESUMO

Environmental phenolic chemicals, due to their widespread occurrence and potent estrogenic properties, pose a risk to human exposure. The phenolic organic contaminants alkylphenols (APs) and alkylphenol polyethoxylates (APEs) are used in various household applications, and they may enter to the environment during production and use, potentially appearing in indoor dust. However, little is known about the levels of environmental phenolics in indoor environments. In this study, five of these compounds namely octylphenol (OP), 4-Octylphenol Monoethoxylate (4-OPME), 4-tert-octylphenol (4-t-OP), 4-n-nonylphenol (4-n-NP) and nonylphenol diethoxylate (di-NPE) were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in household dust samples (n = 148) collected from Ankara, the capital of Turkiye. OP and 4-OPME was not present in any of the analyzed samples. The median concentrations of the 148 settling dust samples were 35, 520, and 1910 ng g-1 dust for 4-t-OP, 4-n-NP, and di-NPE, respectively. An assessment of the human (children and adults) exposure pathway to APs and APEs, which are recognized as endocrine-disrupting chemicals found in residential dust, revealed that it was approximately 3 times higher for children than for adults at both moderate and heavy exposure levels. The association between chemical exposure, house characteristics, and family lifestyle was investigated using a multivariate logistic regression model. According to the results of this model, while the high concentrations measured for 4-t-OP were not found to be associated with any of the household parameters, high levels of 4-n-NP and di-NPE were associated with the frequency of house cleaning, repairs made during the previous year, residential type, the number of occupants, flooring materials, and the purchase of new household items within the past year. This study provides a basis for prioritizing toxicology and exposure studies for EDCs and mixtures and may offer new tools for exposure assessment in health studies.


Assuntos
Poeira , Hominidae , Fenóis , Adulto , Criança , Humanos , Animais , Cromatografia Líquida , Turquia , Espectrometria de Massas em Tandem
2.
Environ Sci Pollut Res Int ; 30(3): 7718-7735, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36044148

RESUMO

One of the impacts of the COVID-19 pandemic is leading people remain at homes longer than ever. Considering the elongation of the time people spend indoors, the potential health risks caused by contaminants including heavy metals in indoor environments have become even more critical. The purpose of this study was to evaluate the levels and sources of heavy metals in indoor dust, to assess the exposure to heavy metals via indoor dust, and to estimate the associated health risk. The highest median value was measured for Zn (263 µg g-1), while the lowest median concentration value was observed for Cd (0.348 µg g-1). The levels of elements measured in the current study were found to be within the ranges reported in the other parts of the world, mostly close to the lower end of the range. House characteristics such as proximity to the main street, presence of pets, number of occupants, and age of the building were the house characteristics influencing the observed higher concentrations of certain heavy metals in houses. Enrichment factor values range between 1.79 (Cr) and 20.4 (Zn) with an average EF value of 8.80 ± 6.80 representing that the targeted elements are enriched (EF>2) in indoor dust in Ankara. Positive matrix factorization results showed that the heavy metals in the house dust in the study area are mainly contributed from sources namely outdoor dust, carpets/furniture, solders, wall paint/coal combustion, and cigarette smoke. Carcinogenic and non-carcinogenic risk values from heavy metals did not exceed the safe limits recommended by EPA. The highest carcinogenic risk level was caused by Cr. The risk through ingestion was higher than inhalation, and the risk levels were higher for children than for adults.


Assuntos
COVID-19 , Metais Pesados , Oligoelementos , Criança , Adulto , Humanos , Poeira/análise , Monitoramento Ambiental/métodos , Turquia , Pandemias , Medição de Risco , Metais Pesados/análise , Carcinogênese , China , Cidades
3.
Environ Sci Pollut Res Int ; 27(31): 39041-39053, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32642893

RESUMO

The presence of polybrominated diphenyl ethers (PBDEs) in the car is due to their use as a flame retardant additive in various car components such as dashboard, plastic parts, seat and headliner cushion foams, insulated cables, and electronic circuits. Ingestion of dust inadvertently or dermal contact to dust are significant pathways of human exposure to pollutants including PBDEs. There are no studies documenting presence of car dust associated flame retardants in Turkey. In the current study, a total of 13 PBDEs congeners were investigated in 62 car dust samples collected from Bursa province of Turkey using glass-fiber filters and a vacuum cleaner. Results of the study showed that congener concentrations were within the range of

Assuntos
Poluição do Ar em Ambientes Fechados/análise , Retardadores de Chama/análise , Adulto , Automóveis , Pré-Escolar , Poeira/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Humanos , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...