Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273831

RESUMO

Nano-biochar is a source of blackish carbonaceous material, a prerequisite for sustainable crop productivity. By using a variety of feedstock materials, nanobiochar synthesis can be employed via pyrolysis. Therefore, a project was initiated to explore the morpho-physio-biochemical alteration at the vegetative stage of wheat crops after the foliar application of nanobiochar suspension (NBS). This investigation was conducted at the Botanical Research Area of the University of Lahore in a randomized complete block design (RCBD) arrangement, with four treatments (0, 1, 3, and 5% NBS) by maintaining three replications for each treatment using the wheat variety "Zincol". Nano biochar suspension in above mentioned concentrations were foliarly applied at the end of tillering/beginning of leaf sheath elongation of wheat seedlings to assess the morphological changes (root length, shoot length, number of leaves, fresh biomass/plant, dry biomass/plant), physio-biochemical alterations (total free amino acids, total sugars, chlorophyll content, protein, phenols, flavonoids), and nutrient uptake (Na, K, Ca, Mg, N, P contents. Our findings indicate that the foliar application of 3% NBS yielded the most favorable results across all measured attributes. Furthermore, Treatment-4 (5% NBS) specifically improved certain traits, including leaf area, total soluble proteins, and leaf calcium content. Finally, all NBS resulted in a decrease in carotenoid and sodium content in wheat seedlings.

2.
Plants (Basel) ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674489

RESUMO

Research on nanoparticles (NPs) is gaining great attention in modulating abiotic stress tolerance and improving crop productivity. Therefore, this investigation was carried out to evaluate the effects of copper oxide nanoparticles (CuO-NPs) on growth and biochemical characteristics in two maize hybrids (YH-5427 and FH-1046) grown under normal conditions or subjected to saline stress. A pot-culture experiment was carried out in the Botanical Research Area of "the University of Lahore", Lahore, Pakistan, in a completely randomized design. At two phenological stages, both maize hybrids were irrigated with the same amount of distilled water or NaCl solution (EC = 5 dS m-1) and subjected or not to foliar treatment with a suspension of CuO-NPs. The salt stress significantly reduced the photosynthetic parameters (photosynthetic rate, transpiration, stomatal conductance), while the sodium content in the shoot and root increased. The foliar spray with CuO-NPs improved the growth and photosynthetic attributes, along with the N, P, K, Ca, and Mg content in the roots and shoots. However, the maize hybrid YH-5427 responded better than the other hybrid to the saline stress when sprayed with CuO-NPs. Overall, the findings of the current investigation demonstrated that CuO-NPs can help to reduce the adverse effects of salinity stress on maize plants by improving growth and physio-biochemical attributes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA