Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 3): 599-608, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24357723

RESUMO

Sharp-1 is a basic helix-loop-helix (bHLH) transcriptional repressor that is involved in a number of cellular processes. Our previous studies have demonstrated that Sharp-1 is a negative regulator of skeletal myogenesis and it blocks differentiation of muscle precursor cells by modulating the activity of MyoD. In order to understand its role in pre- and post-natal myogenesis, we assessed skeletal muscle development and freeze-injury-induced regeneration in Sharp-1-deficient mice. We show that embryonic skeletal muscle development is not impaired in the absence of Sharp-1; however, post-natally, the regenerative capacity is compromised. Although the initial phases of injury-induced regeneration proceed normally in Sharp-1(-/-) mice, during late stages, the mutant muscle exhibits necrotic fibers, calcium deposits and fibrosis. TGF-ß expression, as well as levels of phosphorylated Smad2 and Smad3, are sustained in the mutant tissue and treatment with decorin, which blocks TGF-ß signaling, improves the histopathology of Sharp-1(-/-) injured muscles. In vitro, Sharp-1 associates with Smad3, and its overexpression inhibits TGF-ß- and Smad3-mediated expression of extracellular matrix genes in myofibroblasts. These results demonstrate that Sharp-1 regulates muscle regenerative capacity, at least in part, by modulation of TGF-ß signaling.


Assuntos
Músculo Esquelético/metabolismo , Regeneração/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Miofibroblastos/metabolismo , Transdução de Sinais , Proteína Smad3 , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese
2.
Hum Mol Genet ; 18(22): 4304-16, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19679564

RESUMO

Duchenne Muscular Dystrophy (DMD), caused by loss of dystrophin is characterized by progressive muscle cell necrosis. However, the mechanisms leading to muscle degeneration in DMD are poorly understood. Here, we demonstrate that Stra13 protects muscle cells from oxidative damage, and its absence leads to muscle necrosis in response to injury in Stra13-deficient mice. Interestingly, Stra13-/- mutants express elevated levels of TNFalpha, reduced levels of heme-oxygenase-1, and display apparent signs of oxidative stress prior to muscle death. Moreover, Stra13-/- muscle cells exhibit an increased sensitivity to pro-oxidants, and conversely, Stra13 overexpression provides resistance to oxidative damage. Consistently, treatment with anti-oxidant N-acetylcysteine ameliorates muscle necrosis in Stra13-/- mice. We also demonstrate that Stra13 expression is elevated in muscles from dystrophin-deficient (mdx) mice, and mdx/Stra13-/- double mutants exhibit an early onset of muscle degeneration. Our studies underscore the importance of oxidative stress-mediated muscle degeneration in muscular dystrophy, and reveal the contribution of Stra13 in maintenance of muscle integrity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Estresse Oxidativo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/metabolismo , Necrose
3.
EMBO Rep ; 10(1): 79-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19029947

RESUMO

SHARP1, a basic helix-loop-helix transcription factor, is expressed in many cell types; however, the mechanisms by which it regulates cellular differentiation remain largely unknown. Here, we show that SHARP1 negatively regulates adipogenesis. Although expression of the early marker CCAAT/enhancer binding protein beta (C/EBPbeta) is not altered, its crucial downstream targets C/EBPalpha and peroxisome proliferator-activated receptor gamma (PPARgamma) are downregulated by SHARP1. Protein interaction studies confirm that SHARP1 interacts with and inhibits the transcriptional activity of both C/EBPbeta and C/EBPalpha, and enhances the association of C/EBPbeta with histone deacetylase 1 (HDAC1). Consistently, in SHARP1-expressing cells, HDAC1 and the histone methyltransferase G9a are retained at the C/EBP regulatory sites on the C/EBPalpha and PPARgamma2 promoters during differentiation, resulting in inhibition of their expression. Interestingly, treatment with troglitazone results in displacement of HDAC1 and G9a, and rescues the differentiation defect of SHARP1-overexpressing cells. Our data indicate that SHARP1 inhibits adipogenesis through the regulation of C/EBP activity, which is essential for PPARgamma-ligand-dependent displacement of co-repressors from adipogenic promoters.


Assuntos
Adipogenia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
4.
J Cell Biol ; 177(4): 647-57, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17502421

RESUMO

Satellite cells play a critical role in skeletal muscle regeneration in response to injury. Notch signaling is vital for satellite cell activation and myogenic precursor cell expansion but inhibits myogenic differentiation. Thus, precise spatial and temporal regulation of Notch activity is necessary for efficient muscle regeneration. We report that the basic helix-loop-helix transcription factor Stra13 modulates Notch signaling in regenerating muscle. Upon injury, Stra13(-/-) mice exhibit increased cellular proliferation, elevated Notch signaling, a striking regeneration defect characterized by degenerated myotubes, increased mononuclear cells, and fibrosis. Stra13(-/-) primary myoblasts also exhibit enhanced Notch activity, increased proliferation, and defective differentiation. Inhibition of Notch signaling ex vivo and in vivo ameliorates the phenotype of Stra13(-/-) mutants. We demonstrate in vitro that Stra13 antagonizes Notch activity and reverses the Notch-imposed inhibition of myogenesis. Thus, Stra13 plays an important role in postnatal myogenesis by attenuating Notch signaling to reduce myoblast proliferation and promote myogenic differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Notch/antagonistas & inibidores , Receptores Notch/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Células Cultivadas , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Transdução de Sinais/genética
5.
Methods Mol Biol ; 383: 311-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18217694

RESUMO

A balance between proliferation and apoptosis is crucial for cellular homeostasis, and its disruption leading to enhanced cellular proliferation and uncontrolled growth are hallmarks of cancer. Genetic manipulation in the mouse offers a powerful approach to delineate the roles of genes in carcinogenesis and determine the molecular and cellular basis of their function. Mouse embryonic fibroblast cells derived from mice that are disrupted for tumor suppressors or oncogenes have served as an invaluable tool to study altered growth properties of cells and identify regulatory molecules involved in neoplastic transformation. In this chapter, protocols for isolation of mouse embryonic fibroblast cells from midgestation mouse embryos and their applications to study altered growth properties by growth curves and colony formation assays are provided. Methods to analyze cell cycle profiles by flow cytometry using bromodeoxyuridine and propidium iodide staining were also provided, entry of cells in S-phase by [3H] thymidine incorporation studies, and the analysis of cells in mitosis by staining with antiphospho-H3 antibodies are also provided.


Assuntos
Ciclo Celular , Linhagem Celular , Proliferação de Células , Fibroblastos , Animais , Separação Celular , Ensaio de Unidades Formadoras de Colônias , Embrião de Mamíferos/citologia , Citometria de Fluxo , Camundongos , Índice Mitótico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...