Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8503-8509, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405521

RESUMO

Natural fiber-welded (NFW) biopolymer composites are rapidly garnering industrial and commercial attention in the textile sector, and a recent disclosure demonstrating the production of mesoporous NFW materials suggests a bright future as sorbents, filters, and nanoparticle scaffolds. A significant roadblock in the mass production of mesoporous NFW composites for research and development is their lengthy preparation time: 24 h of water rinses to remove the ionic liquid (IL) serving as a welding medium and then 72 h of solvent exchanges (polar to nonpolar), followed by oven drying to attain a mesoporous composite. In this work, the rinsing procedure is systematically truncated using the solution conductivity as a yardstick to monitor IL removal. The traditional water immersion rinses are replaced by a flow-through system (i.e., infinite dilution) using a peristaltic pump, reducing the required water rinse time for the maximum removal of IL to 30 min. This procedure also allows for easy in-line monitoring of solution conductivity and reclamation of an expensive welding solvent. Further, the organic solvent exchange is minimized to 10 min per solvent (from 24 h), resulting in a total combined rinse time of 1 h. This process acceleration reduces the overall solvent exposure time from 96 to 1 h, an almost 99% temporal improvement.

2.
ACS Macro Lett ; 12(12): 1654-1658, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38104265

RESUMO

Seemingly nonporous biopolymer composites prepared by natural fiber welding (NFW) possess latent pores that can be exfoliated by conscientious solvation. We present a seminal demonstration of this concept for cellulose and explore the impact of latent pores on the manufacture and commercialization of NFW products.

3.
Environ Sci Technol ; 57(9): 3804-3816, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880272

RESUMO

Peroxides find broad applications for disinfecting environmental pathogens particularly in the COVID-19 pandemic; however, the extensive use of chemical disinfectants can threaten human health and ecosystems. To achieve robust and sustainable disinfection with minimal adverse impacts, we developed Fe single-atom and Fe-Fe double-atom catalysts for activating peroxymonosulfate (PMS). The Fe-Fe double-atom catalyst supported on sulfur-doped graphitic carbon nitride outperformed other catalysts for oxidation, and it activated PMS likely through a nonradical route of catalyst-mediated electron transfer. This Fe-Fe double-atom catalyst enhanced PMS disinfection kinetics for inactivating murine coronaviruses (i.e., murine hepatitis virus strain A59 (MHV-A59)) by 2.17-4.60 times when compared to PMS treatment alone in diverse environmental media including simulated saliva and freshwater. The molecular-level mechanism of MHV-A59 inactivation was also elucidated. Fe-Fe double-atom catalysis promoted the damage of not only viral proteins and genomes but also internalization, a key step of virus lifecycle in host cells, for enhancing the potency of PMS disinfection. For the first time, our study advances double-atom catalysis for environmental pathogen control and provides fundamental insights of murine coronavirus disinfection. Our work paves a new avenue of leveraging advanced materials for improving disinfection, sanitation, and hygiene practices and protecting public health.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Camundongos , Animais , Humanos , Desinfecção , Inativação de Vírus , Ecossistema , Pandemias/prevenção & controle , Peróxidos , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...