Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8006): 154-161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480892

RESUMO

Several genetic risk factors for Alzheimer's disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer's disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer's disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer's disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aß induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer's disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Gotículas Lipídicas , Microglia , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Triglicerídeos , Proteínas tau , Meios de Cultivo Condicionados , Fosforilação , Predisposição Genética para Doença
2.
Nanoscale ; 15(32): 13322-13334, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37526009

RESUMO

Here, rational engineering of doxorubicin prodrug loaded peptide-targeted liposomal nanoparticles to selectively target metastatic breast cancer cells in vivo is described. Glucose-regulated protein 78 (GRP78), a heat shock protein typically localized in the endoplasmic reticulum in healthy cells, has been identified to home to the cell surface in certain cancers, and thus has emerged as a promising therapeutic target. Recent reports indicated GRP78 to be expressed on the cell surface of an aggressive subpopulation of stem-like breast cancer cells that exhibit metastatic potential. In this study, a targeted nanoparticle formulation with a GRP78-binding peptide (Kd of 7.4 ± 1.0 µM) was optimized to selectively target this subpopulation. In vitro studies with breast cancer cell lines showed the targeted nanoparticle formulation (TNPGRP78pep) achieved enhanced cellular uptake, while maintaining selectivity over the control groups. In vivo, TNPGRP78pep loaded with doxorubicin prodrug was evaluated using a lung metastatic mouse model and demonstrated inhibition of breast cancer cell seeding to lungs down at the level of negative control groups. Combined, this study established that specific-targeting of surface GRP78 expressing a subpopulation of aggressive breast cancer cells was able to inhibit breast cancer metastasis to lungs, and underpinned the significance of GRP78 in breast cancer metastasis.


Assuntos
Neoplasias , Pró-Fármacos , Animais , Camundongos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Membrana , Linhagem Celular Tumoral , Glucose , Peptídeos , Doxorrubicina/farmacologia
3.
Cell ; 186(19): 4117-4133.e22, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37591239

RESUMO

Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly accelerated in white matter compared with cortical regions, whereas specialized neuronal populations showed region-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discovered differential gene expression patterns associated with three human neurodegenerative diseases, highlighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular foci of brain aging, providing a foundation to target age-related cognitive decline.


Assuntos
Envelhecimento , Disfunção Cognitiva , Substância Branca , Animais , Humanos , Camundongos , Disfunção Cognitiva/genética , Perfilação da Expressão Gênica , Núcleo Solitário , Substância Branca/patologia , Análise da Expressão Gênica de Célula Única , Encéfalo/patologia
4.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546938

RESUMO

Several genetic risk factors for Alzheimer's Disease (AD) implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells. However, the relationship between lipid metabolism in glia and AD pathology remains poorly understood. Through single-nucleus RNA-sequencing of AD brain tissue, we have identified a microglial state defined by the expression of the lipid droplet (LD) associated enzyme ACSL1 with ACSL1-positive microglia most abundant in AD patients with the APOE4/4 genotype. In human iPSC-derived microglia (iMG) fibrillar Aß (fAß) induces ACSL1 expression, triglyceride synthesis, and LD accumulation in an APOE-dependent manner. Additionally, conditioned media from LD-containing microglia leads to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for AD with microglial LD accumulation and neurotoxic microglial-derived factors, potentially providing novel therapeutic strategies for AD.

5.
Nat Commun ; 14(1): 2109, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055410

RESUMO

Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Radioimunoterapia , Células Mieloides , Quimiocina CXCL16 , Microambiente Tumoral , Fator de Transcrição STAT1/genética
7.
Adv Sci (Weinh) ; 8(22): e2100128, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34617419

RESUMO

Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.


Assuntos
Envelhecimento/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Matriz Extracelular/metabolismo , Animais , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Fenótipo
8.
STAR Protoc ; 2(2): 100537, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34036283

RESUMO

High dimensional compositional and transcriptional profiling of heterogeneous brain-infiltrating leukocytes can lead to novel biological and therapeutic discoveries. High-quality single-cell leukocyte preparations are a prerequisite for optimal single cell profiling. Here, we describe a protocol for epitope and RNA-preserving dissociation of adult mouse brains and subsequent leukocyte purification and staining, which is adaptable to homeostatic and pathogenic brains. Leukocyte preparation following this protocol permits exquisite single-cell surface protein and RNA profiling in applications including CyTOF and CITE-seq. For complete details on the use and execution of this protocol, please refer to Guldner et al. (2020) and Golomb et al. (2020).


Assuntos
Encéfalo/patologia , Separação Celular/métodos , Epitopos/genética , Leucócitos , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Células Cultivadas , Feminino , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Camundongos
9.
Cell Rep ; 33(9): 108438, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264626

RESUMO

Phenotypic and functional plasticity of brain immune cells contribute to brain tissue homeostasis and disease. Immune cell plasticity is profoundly influenced by tissue microenvironment cues and systemic factors. Aging and gut microbiota dysbiosis that reshape brain immune cell plasticity and homeostasis has not been fully delineated. Using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq), we analyze compositional and transcriptional changes of the brain immune landscape in response to aging and gut dysbiosis. Discordance between canonical surface-marker-defined immune cell types and their transcriptomes suggest transcriptional plasticity among immune cells. Ly6C+ monocytes predominate a pro-inflammatory signature in the aged brain, while innate lymphoid cells (ILCs) shift toward an ILC2-like profile. Aging increases ILC-like cells expressing a T memory stemness (Tscm) signature, which is reduced through antibiotics-induced gut dysbiosis. Systemic changes due to aging and gut dysbiosis increase propensity for neuroinflammation, providing insights into gut dysbiosis in age-related neurological diseases.


Assuntos
Encéfalo/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Análise de Célula Única/métodos , Animais , Humanos
10.
Cell ; 183(5): 1234-1248.e25, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113353

RESUMO

Brain metastasis (br-met) develops in an immunologically unique br-met niche. Central nervous system-native myeloid cells (CNS-myeloids) and bone-marrow-derived myeloid cells (BMDMs) cooperatively regulate brain immunity. The phenotypic heterogeneity and specific roles of these myeloid subsets in shaping the br-met niche to regulate br-met outgrowth have not been fully revealed. Applying multimodal single-cell analyses, we elucidated a heterogeneous but spatially defined CNS-myeloid response during br-met outgrowth. We found Ccr2+ BMDMs minimally influenced br-met while CNS-myeloid promoted br-met outgrowth. Additionally, br-met-associated CNS-myeloid exhibited downregulation of Cx3cr1. Cx3cr1 knockout in CNS-myeloid increased br-met incidence, leading to an enriched interferon response signature and Cxcl10 upregulation. Significantly, neutralization of Cxcl10 reduced br-met, while rCxcl10 increased br-met and recruited VISTAHi PD-L1+ CNS-myeloid to br-met lesions. Inhibiting VISTA- and PD-L1-signaling relieved immune suppression and reduced br-met burden. Our results demonstrate that loss of Cx3cr1 in CNS-myeloid triggers a Cxcl10-mediated vicious cycle, cultivating a br-met-promoting, immune-suppressive niche.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Quimiocina CXCL10/metabolismo , Terapia de Imunossupressão , Células Mieloides/metabolismo , Animais , Células da Medula Óssea/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Receptor 1 de Quimiocina CX3C/metabolismo , Sistema Nervoso Central/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interferons/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Neutralização , Fenótipo , Linfócitos T/imunologia , Transcriptoma/genética
11.
Nat Commun ; 11(1): 3017, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541798

RESUMO

Breast cancer brain metastases (BCBM) have a 5-20 year latency and account for 30% of mortality; however, mechanisms governing adaptation to the brain microenvironment remain poorly defined. We combine time-course RNA-sequencing of BCBM development with a Drosophila melanogaster genetic screen, and identify Rab11b as a functional mediator of metastatic adaptation. Proteomic analysis reveals that Rab11b controls the cell surface proteome, recycling proteins required for successful interaction with the microenvironment, including integrin ß1. Rab11b-mediated control of integrin ß1 surface expression allows efficient engagement with the brain ECM, activating mechanotransduction signaling to promote survival. Lipophilic statins prevent membrane association and activity of Rab11b, and we provide proof-of principle that these drugs prevent breast cancer adaptation to the brain microenvironment. Our results identify Rab11b-mediated recycling of integrin ß1 as regulating BCBM, and suggest that the recycleome, recycling-based control of the cell surface proteome, is a previously unknown driver of metastatic adaptation and outgrowth.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/patologia , Integrina beta1/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Humanos , Integrina beta1/genética , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transporte Proteico , Transdução de Sinais , Microambiente Tumoral , Proteínas rab de Ligação ao GTP/genética
12.
Sci Rep ; 10(1): 3474, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103065

RESUMO

Reliable approaches to identify stem cell mechanisms that mediate aggressive cancer could have great therapeutic value, based on the growing evidence of embryonic signatures in metastatic cancers. However, how to best identify and target stem-like mechanisms aberrantly acquired by cancer cells has been challenging. We harnessed the power of reprogramming to examine GRP78, a chaperone protein generally restricted to the endoplasmic reticulum in normal tissues, but which is expressed on the cell surface of human embryonic stem cells and many cancer types. We have discovered that (1) cell surface GRP78 (sGRP78) is expressed on iPSCs and is important in reprogramming, (2) sGRP78 promotes cellular functions in both pluripotent and breast cancer cells (3) overexpression of GRP78 in breast cancer cells leads to an induction of a CD24-/CD44+ tumor initiating cell (TIC) population (4) sGRP78+ breast cancer cells are enriched for stemness genes and appear to be a subset of TICs (5) sGRP78+ breast cancer cells show an enhanced ability to seed metastatic organ sites in vivo. These collective findings show that GRP78 has important functions in regulating both pluripotency and oncogenesis, and suggest that sGRP78 marks a stem-like population in breast cancer cells that has increased metastatic potential in vivo.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Proteínas de Choque Térmico/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Reprogramação Celular , Chaperona BiP do Retículo Endoplasmático , Feminino , Células HEK293 , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
13.
Cancer Res ; 80(5): 1156-1170, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932454

RESUMO

The noncanonical Wnt ligand Wnt5a is found in high concentrations in ascites of women with ovarian cancer. In this study, we elucidated the role of Wnt5a in ovarian cancer metastasis. Wnt5a promoted ovarian tumor cell adhesion to peritoneal mesothelial cells as well as migration and invasion, leading to colonization of peritoneal explants. Host components of the ovarian tumor microenvironment, notably peritoneal mesothelial cells and visceral adipose, secreted Wnt5a. Conditional knockout of host WNT5A significantly reduced peritoneal metastatic tumor burden. Tumors formed in WNT5A knockout mice had elevated cytotoxic T cells, increased M1 macrophages, and decreased M2 macrophages, indicating that host Wnt5a promotes an immunosuppressive microenvironment. The Src family kinase Fgr was identified as a downstream effector of Wnt5a. These results highlight a previously unreported role for host-expressed Wnt5a in ovarian cancer metastasis and suggest Fgr as a novel target for inhibition of ovarian cancer metastatic progression.Significance: This study establishes host-derived Wnt5a, expressed by peritoneal mesothelial cells and adipocytes, as a primary regulator of ovarian cancer intraperitoneal metastatic dissemination and identifies Fgr kinase as novel target for inhibition of metastasis.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/imunologia , Peritônio/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteína Wnt-5a/metabolismo , Quinases da Família src/metabolismo , Animais , Carcinoma Epitelial do Ovário/imunologia , Adesão Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Peritoneais/secundário , Peritônio/citologia , Peritônio/imunologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Proteína Wnt-5a/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Commun ; 10(1): 3817, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444334

RESUMO

Acquired resistance to targeted cancer therapy is a significant clinical challenge. In parallel with clinical trials combining CDK4/6 inhibitors to treat HER2+ breast cancer, we sought to prospectively model tumor evolution in response to this regimen in vivo and identify a clinically actionable strategy to combat drug resistance. Despite a promising initial response, acquired resistance emerges rapidly to the combination of anti-HER2/neu antibody and CDK4/6 inhibitor Palbociclib. Using high-throughput single-cell profiling over the course of treatments, we reveal a distinct immunosuppressive immature myeloid cell (IMC) population to infiltrate the resistant tumors. Guided by single-cell transcriptome analysis, we demonstrate that combination of IMC-targeting tyrosine kinase inhibitor cabozantinib and immune checkpoint blockade enhances anti-tumor immunity, and overcomes the resistance. Furthermore, sequential combinatorial immunotherapy enables a sustained control of the fast-evolving CDK4/6 inhibitor-resistant tumors. Our study demonstrates a translational framework for treating rapidly evolving tumors through preclinical modeling and single-cell analyses.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Commun ; 10(1): 2860, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253784

RESUMO

Lacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Lapatinib/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptor ErbB-2/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
16.
Development ; 146(5)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30760484

RESUMO

Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a 'top-down' scaffolding event. Further, we identify an F-actin population - stable base clusters - that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals.


Assuntos
Axônios/fisiologia , Microscopia Confocal/métodos , Microscopia de Vídeo/métodos , Actinas , Animais , Animais Geneticamente Modificados , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Camundongos Transgênicos , Distribuição Normal , Fótons , Razão Sinal-Ruído , Peixe-Zebra
17.
Clin Exp Metastasis ; 36(2): 119-137, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30673912

RESUMO

The Metastasis Research Society (MRS) 17th Biennial conference on metastasis was held on the 1st to the 5th of August 2018 at Princeton University, NJ, USA. The meeting was held around themes addressing notable aspects of the understanding and treatment of metastasis and metastatic disease covering basic, translational, and clinical research. Importantly, the meeting was largely supported by our patient advocate partners including Susan G. Komen for the Cure, Theresa's Research Foundation and METAvivor. There were a total of 85 presentations from invited and selected speakers spread across the main congress and presentations from the preceding Young Investigator Satellite Meeting. Presentations are summarized in this report by session topic.


Assuntos
Metástase Neoplásica , Animais , Humanos
18.
Cancer Res ; 77(11): 2844-2856, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400476

RESUMO

The impact of altered amino acid metabolism on cancer progression is not fully understood. We hypothesized that a metabolic transcriptome shift during metastatic evolution is crucial for brain metastasis. Here, we report a powerful impact in this setting caused by epigenetic upregulation of glutamate decarboxylase 1 (GAD1), a regulator of the GABA neurotransmitter metabolic pathway. In cell-based culture and brain metastasis models, we found that downregulation of the DNA methyltransferase DNMT1 induced by the brain microenvironment-derived clusterin resulted in decreased GAD1 promoter methylation and subsequent upregulation of GAD1 expression in brain metastatic tumor cells. In a system to dynamically visualize cellular metabolic responses mediated by GAD1, we monitored the cytosolic NADH:NAD+ equilibrium in tumor cells. Reducing GAD1 in metastatic cells by primary glia cell coculture abolished the capacity of metastatic cells to utilize extracellular glutamine, leading to cytosolic accumulation of NADH and increased oxidative status. Similarly, genetic or pharmacologic disruption of the GABA metabolic pathway decreased the incidence of brain metastasis in vivo Taken together, our results show how epigenetic changes in GAD1 expression alter local glutamate metabolism in the brain metastatic microenvironment, contributing to a metabolic adaption that facilitates metastasis outgrowth in that setting. Cancer Res; 77(11); 2844-56. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/secundário , Metilação de DNA , Glutamato Descarboxilase/metabolismo , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Biologia Computacional , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transfecção , Microambiente Tumoral , Regulação para Cima
19.
Sci Rep ; 6: 24201, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068335

RESUMO

Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.


Assuntos
Biometria/métodos , Metástase Neoplásica/diagnóstico por imagem , Metástase Neoplásica/patologia , Imagem Óptica/métodos , Patologia/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Camundongos
20.
Integr Biol (Camb) ; 7(2): 153-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25500646

RESUMO

The crosstalk between tumor cells and cells of the tumor stroma dictate malignant progression and represent an intriguing and viable anticancer therapeutic target. The successful development of therapeutics targeting tumor-stroma interactions is tied to the insight provided by basic research on such crosstalk. Tumor-stroma interactions can be transient and dynamic, and they occur within defined spatiotemporal contexts among genetically and compositionally heterogeneous populations of cells, yet methods currently applied to study the said crosstalk do not sufficiently address these features. Emerging imaging and genetic methods, however, can overcome limitations of traditional approaches and provide unprecedented insight into tumor-stroma crosstalk with unparalleled accuracy. The comprehensive data obtained by applying emerging methods will require processing and analysis by multidisciplinary teams, but the efforts will ultimately rejuvenate hope in developing novel therapies against pro-tumorigenic tumor-stroma crosstalk.


Assuntos
Neoplasias/patologia , Neoplasias/fisiopatologia , Animais , Comunicação Celular/genética , Comunicação Celular/fisiologia , Biologia Computacional , Diagnóstico por Imagem , Humanos , Microscopia , Neoplasias/genética , Células Estromais/patologia , Células Estromais/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...