Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 235: 115623, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37542827

RESUMO

Nanomaterials and nanotechnology offer promising opportunities in point-of-care (POC) diagnostics and therapeutics due to their unique physical and chemical properties. POC platforms aim to provide rapid and portable diagnostic and therapeutic capabilities at the site of patient care, offering cost-effective solutions. Incorporating nanomaterials with distinct optical, electrical, and magnetic properties can revolutionize the POC industry, significantly enhancing the effectiveness and efficiency of diagnostic and theragnostic devices. By leveraging nanoparticles and nanofibers in POC devices, nanomaterials have the potential to improve the accuracy and speed of diagnostic tests, making them more practical for POC settings. Technological advancements, such as smartphone integration, imagery instruments, and attachments, complement and expand the application scope of POCs, reducing invasiveness by enabling analysis of various matrices like saliva and breath. These integrated testing platforms facilitate procedures without compromising diagnosis quality. This review provides a summary of recent trends in POC technologies utilizing nanomaterials and nanotechnologies for analyzing disease biomarkers. It highlights advances in device development, nanomaterial design, and their applications in POC. Additionally, complementary tools used in POC and nanomaterials are discussed, followed by critical analysis of challenges and future directions for these technologies.


Assuntos
Nanoestruturas , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Testes Imediatos , Nanoestruturas/química , Nanotecnologia/métodos , Saliva
2.
ACS Appl Mater Interfaces ; 15(31): 37247-37258, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499237

RESUMO

Recently, illicit drug use has become more widespread and is linked to problems with crime and public health. These drugs disrupt consciousness, affecting perceptions and feelings. Combining stimulants and depressants to suppress the effect of drugs has become the most common reason for drug overdose deaths. On-site platforms for illicit-drug detection have gained an important role in dealing, without any excess equipment, long process, and training, with drug abuse and drug trafficking. Consequently, the development of rapid, sensitive, noninvasive, and reliable multiplex drug-detecting platforms has become a major necessity. In this study, a multiplex laser-scribed graphene (LSG) sensing platform with one counter, one reference, and three working electrodes was developed for rapid and sensitive electrochemical detection of amphetamine (AMP), cocaine (COC), and benzodiazepine (BZD) simultaneously in saliva samples. The multidetection sensing system was combined with a custom-made potentiostat to achieve a complete point-of-care (POC) platform. Smartphone integration was achieved by a customized application to operate, display, and send data. To the best of our knowledge, this is the first multiplex LSG-based electrochemical platform designed for illicit-drug detection with a custom-made potentiostat device to build a complete POC platform. Each working electrode was optimized with standard solutions of AMP, COC, and BZD in the concentration range of 1.0 pg/mL-500 ng/mL. The detection limit of each illicit drug was calculated as 4.3 ng/mL for AMP, 9.7 ng/mL for BZD, and 9.0 ng/mL for COC. Healthy and MET (methamphetamine) patient saliva samples were used for the clinical study. The multiplex LSG sensor was able to detect target analytes in real saliva samples successfully. This multiplex detection device serves the role of a practical and affordable alternative to conventional drug-detection methods by combining multiple drug detections in one portable platform.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Drogas Ilícitas , Metanfetamina , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Monitoramento de Medicamentos
3.
Biosensors (Basel) ; 13(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979600

RESUMO

Microfluidics is very crucial in lab-on-a-chip systems for carrying out operations in a large-scale laboratory environment on a single chip. Microfluidic systems are miniaturized devices in which the fluid behavior and control can be manipulated on a small platform, with surface forces on the platform being greater than volumetric forces depending on the test method used. In recent years, paper-based microfluidic analytical devices (µPADs) have been developed to be used in point-of-care (POC) technologies. µPADs have numerous advantages, including ease of use, low cost, capillary action liquid transfer without the need for power, the ability to store reagents in active form in the fiber network, and the capability to perform multiple tests using various measurement techniques. These benefits are critical in the advancement of paper-based microfluidics in the fields of disease diagnosis, drug application, and environment and food safety. Cancer is one of the most critical diseases for early detection all around the world. Detecting cancer-specific biomarkers provides significant data for both early diagnosis and controlling the disease progression. µPADs for cancer biomarker detection hold great promise for improving cure rates, quality of life, and minimizing treatment costs. Although various types of bioanalytical platforms are available for the detection of cancer biomarkers, there are limited studies and critical reviews on paper-based microfluidic platforms in the literature. Hence, this article aims to draw attention to these gaps in the literature as well as the features that future platforms should have.


Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Humanos , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Detecção Precoce de Câncer , Qualidade de Vida , Papel , Biomarcadores Tumorais , Neoplasias/diagnóstico , Dispositivos Lab-On-A-Chip
4.
Biosensors (Basel) ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36979612

RESUMO

Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, tumor DNA, or circulating tumor cells. Although these markers are scarce, making their isolation and detection in complex matrices challenging, the development in polymer chemistry producing interesting structures, including molecularly imprinted polymers, branched polymers, nanopolymer composites, and hybrids, allowed the development of enhanced platforms with impressive performance for liquid biopsies analysis. This review describes the latest advances and developments in polymer synthesis and their application for minimally invasive cancer diagnosis. The polymer structures improve the operational performances of biosensors through various processes, such as increased affinity for enhanced sensitivity, improved binding, and avoidance of non-specific interactions for enhanced specificity. Furthermore, polymer-based materials can be a tremendous help in signal amplification of usually low-concentrated targets in the sample. The pros and cons of these materials, how the synthesis process affects their performance, and the device applications for liquid biopsies diagnosis will be critically reviewed to show the essentiality of this technology in oncology and clinical biomedicine.


Assuntos
Neoplasias , Humanos , Biópsia Líquida , Neoplasias/diagnóstico , Neoplasias/patologia , DNA , Polímeros/química , Proteínas
5.
Biosensors (Basel) ; 12(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36140121

RESUMO

Diagnostic biomarkers based on epigenetic changes such as DNA methylation are promising tools for early cancer diagnosis. However, there are significant difficulties in directly and specifically detecting methylated DNA regions. Here, we report an electrochemical sensing system based on magnetic nanoparticles that enable a quantitative and selective analysis of the methylated septin9 (mSEPT9) gene, which is considered a diagnostic marker in early stage colorectal cancer (CRC). Methylation levels of SEPT9 in CRC samples were successfully followed by the selective recognition ability of a related peptide nucleic acid (PNA) after hybridization with DNA fragments in human patients' serums and plasma (n = 10). Moreover, this system was also adapted into a point-of-care (POC) device for a one-step detection platform. The detection of mSEPT9 demonstrated a limit of detection (LOD) value of 0.37% and interference-free measurement in the presence of branched-chain amino acid transaminase 1 (BCAT1) and SRY box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1). The currently proposed functional platform has substantial prospects in translational applications of early CRC detection.


Assuntos
Neoplasias Colorretais , Nanopartículas de Magnetita , Ácidos Nucleicos Peptídicos , Aminoácidos de Cadeia Ramificada , Biomarcadores Tumorais , Neoplasias Colorretais/diagnóstico , DNA , Detecção Precoce de Câncer , Compostos Ferrosos , Humanos , Metalocenos , Septinas/genética , Septinas/metabolismo , Transaminases/metabolismo , Fatores de Transcrição/metabolismo
6.
Biosensors (Basel) ; 12(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36004979

RESUMO

Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.


Assuntos
Técnicas Biossensoriais , Smartphone , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Atenção à Saúde , Sistemas Automatizados de Assistência Junto ao Leito
7.
Biosensors (Basel) ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624602

RESUMO

The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Polímeros/química
8.
Mikrochim Acta ; 189(5): 202, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474492

RESUMO

The construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of ε-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis. Next, the PPy-g-PCL was used for the construction of a dot-blot assay which was calibrated for applications to human nasopharyngeal samples. The analytical features of the proposed sensor showed a detection range of 6.03-8.7 LOG viral copy mL-1 (Ct Scores: 8-25), the limit of detection (LOD), and quantification (LOQ) of 1.84 and 6.16 LOG viral copy mL-1, respectively. The repeatability and reproducibility of the platform had a coefficient of variation (CV) ranging between 1.2 and 5.9%. The fluorescence-based dot-blot assay was tested with human samples. Significant differences were observed between the fluorescence intensity of the negative and positive samples, with an overall correct response of 93.33%. The assay demonstrated a high correlation with RT-PCR data. This strategy opens new insights into simplified synthesis procedures of the reporter molecules and their high potential sensing and diagnosis applications.


Assuntos
COVID-19 , SARS-CoV-2 , Bioensaio , COVID-19/diagnóstico , Caproatos , Corantes , Humanos , Lactonas , Poli A , Poliésteres , Polimerização , Reprodutibilidade dos Testes
9.
Turk J Chem ; 45(2): 436-451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104055

RESUMO

To improve bioavailability and stability of hydrophobic and hydrophilic compounds, nanoemulsions are good alternatives as delivery systems because of their nontoxic and nonirritant nature. Glutathione (GSH) suffers from low stability in water, where its encapsulation in nanoemulsions is a powerful strategy to its stability in aqueous systems. The aim of this study was to obtain nanoemulsions from the hydrophobic/hydrophilic contents of N. sativa seed oil so as to improve GSH stability along with bioavailability of N. sativa seed oil. Then, the prepared nanoemulsions were tested for in vitro hepatoprotective activity against ethanol toxicity. To the best of our knowledge, there is no study on the test of nanoemulsions by the combination of Nigella sativa seed oils and GSH in hepatoprotective activity. Here, nanoemulsions with different contents were prepared using Nigella sativa seed oils. Content analyses and characterisation studies of prepared nanoemulsions were carried out. In order to investigate the protective effects against to ethanol exposure, THLE-2 cells were pretreated with nanoemulsions for 2 h with the maximum benign dose (0.5 mg/mL of nanoemulsions). Ethanol (400 mM) was introduced to pretreated cells and nontreated cells for 48- or 72-h periods, followed by cell viability assay was carried out. Fluorescence microscopy tests revealed the introduction of the nanoemulsions into THLE-2 cells. The findings show that nanoformulations have promising in vitro hepatoprotective effects on the THLE-2 cell line against ethanol exposure.

10.
Anal Chem ; 90(21): 12325-12333, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30222319

RESUMO

In this Feature, the most recent developments as well as "pros and cons" in smartphone sensing, which have been developed using various functional nanoparticles in paper-based sensing systems, will be discussed. Additionally, smart phone sensing and POC combination as a potential tool that opens a gate for knowledge flow "from lab scale data to public use" will be evaluated.


Assuntos
Técnicas Biossensoriais , Saúde Global , Nanopartículas/química , Papel , Smartphone , Técnicas Biossensoriais/instrumentação , Humanos , Propriedades de Superfície
11.
Biomacromolecules ; 19(7): 3067-3076, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29750865

RESUMO

A novel catechol-bearing polypeptide (CtP) was synthesized and used as a component of electrochemical biosensor involving both enzymatic activity and affinity-based sensing systems. Glucose oxidase (GOx) and anti-immunoglobulin G (Anti-IgG) were selected as model biorecognition elements for the selective analysis of glucose and IgG. Step-by-step surface modifications were followed using various techniques such as cyclic voltammetry (CV) and electrochemical impedance spectrometry (EIS) as well as X-ray photoelectron spectroscopy (XPS). Additionally, contact angles were measured in order to observe surface properties. Amperometric measurements using the GOx biosensor were performed at -0.7 V by following the oxygen consumption due to the enzymatic reaction in different glucose concentrations. Affinity-based interactions via IgG sensor were monitored using the differential pulse voltammetry (DPV) technique. As the "surface design with CtP" approach employed herein is generally applicable and easily adaptable to obtain functional matrices for biomolecule immobilization, CtP-coated surfaces can be promising platforms for the fabrication of various biobased sensing systems.


Assuntos
Técnicas Biossensoriais/métodos , Catecóis/química , Glucose/análise , Imunoglobulina G/análise , Peptídeos/química , Anticorpos Anti-Idiotípicos/química , Anticorpos Anti-Idiotípicos/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...