Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(3): 594-605, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36533540

RESUMO

Chemically induced crosslinked enhanced emission (CEE) of urea and citric acid-derived carbon polymer dot (CPD) nanoparticles is established here with a rare zero linker approach, i.e. without the use of any separate crosslinkers. Such chemical CEE like any chemical reaction was achieved through amide bond formation using carbodiimide chemistry, pointing towards the feasibility of developing a general methodology for their formation through engineering the nanoparticle surface functionality. Exhaustive characterization was done to pinpoint the structure, morphology, and photophysics of the CPDs and concurrently eliminate the possibility of the involvement and interference by molecular fluorophores for the unique optical tuning of the CPDs. The structure-photophysics relation was further restated through theoretical studies involving density functional theory (DFT) that correlated significantly well with the experimental findings. Most interestingly, the CPDs revealed pH responsiveness due to the formation or hydrolysis of amide bonds with acid or base, respectively, which was manifested through a spectacular change in fluorescence emission visible to the naked eye through UV illumination. This distinct pH-dependent photoluminescence properties of CPDs opens up an enormous opportunity for interesting applications, including discriminating normal and cancerous cells, which we demonstrate herein as a proof of concept through in vitro imaging.


Assuntos
Neoplasias , Polímeros , Polímeros/química , Carbono/química , Fluorescência , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Neoplasias/diagnóstico por imagem
3.
J Org Chem ; 85(15): 9955-9968, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32600042

RESUMO

Stereoselective formation of glycosidic linkages has been the prime focus for contemporary carbohydrate chemistry. Herein, we report cyanomethyl (CNMe) ether as an efficient and effective participating orthogonal protecting group for the stereoselective synthesis of 1,2-trans-ß-O-glycosides. The participating group facilitated good to high ß-selective glycosylation with a broad range of electron-rich and electron-deficient glycosyl acceptors. Detailed experimental and theoretical studies reveal the involvement of CNMe ether in the formation of a six-membered imine-type cyclic intermediate for the observed stereoselectivity. Rapid incorporation and selective removal of the CNMe ether group in the presence of benzyl ether and isopropylidene acetal protection have also been reported here. The nitrile group provided an opportunity for the glycodiversification through further derivatizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...