Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4421, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285223

RESUMO

Nuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links. Here, we demonstrate a concept of a microelectronic quantum device at ambient conditions using diamond as wide bandgap semiconductor. The basic quantum processor unit - a single 14N nuclear spin coupled to the NV electron - is read photoelectrically and thus operates in a manner compatible with nanoscale electronics. The underlying theory provides the key ingredients for photoelectric quantum gate operations and readout of nuclear qubit registers. This demonstration is, therefore, a step towards diamond quantum devices with a readout area limited by inter-electrode distance rather than by the diffraction limit. Such scalability could enable the development of electronic quantum processors based on the dipolar interaction of spin-qubits placed at nanoscopic proximity.

2.
ACS Sens ; 6(6): 2077-2107, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038091

RESUMO

The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.


Assuntos
Diamante , Nanopartículas , Magnetismo , Nitrogênio , Temperatura
3.
ACS Appl Mater Interfaces ; 13(16): 18500-18510, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33849273

RESUMO

We propose a label-free biosensor concept based on the charge state manipulation of nitrogen-vacancy (NV) quantum color centers in diamond, combined with an electrochemical microfluidic flow cell sensor, constructed on boron-doped diamond. This device can be set at a defined electrochemical potential, locking onto the particular chemical reaction, whilst the NV center provides the sensing function. The NV charge state occupation is initially prepared by applying a bias voltage on a gate electrode and then subsequently altered by exposure to detected charged molecules. We demonstrate the functionality of the device by performing label-free optical detection of DNA molecules. In this experiment, a monolayer of strongly cationic charged polymer polyethylenimine is used to shift the charge state of near surface NV centers from negatively charged NV- to neutral NV0 or dark positively charged NV+. Immobilization of negatively charged DNA molecules on the surface of the sensor restores the NV centers charge state back to the negatively charged NV-, which is detected using confocal photoluminescence microscopy. Biochemical reactions in the microfluidic channel are characterized by electrochemical impedance spectroscopy. The use of the developed electrochemical device can also be extended to nuclear magnetic resonance spin sensing.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/análise , Diamante/química , Dispositivos Lab-On-A-Chip , Nitrogênio/química , Eletroquímica , Polietilenoimina/química
4.
ACS Nano ; 14(10): 12938-12950, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32790348

RESUMO

Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs. We demonstrated that the T1 spin relaxation time of the NV centers is very sensitive to the number of nitroxide radicals, with a resolution down to ∼10 spins per ND (detection of approximately 10-23 mol in a localized volume). The detection is based on T1 shortening upon the radical attachment, and we propose a theoretical model describing this phenomenon. We further show that this colloidally stable, water-soluble system can be used dynamically for spatiotemporal readout of a redox chemical process (oxidation of ascorbic acid) occurring near the ND surface in an aqueous environment under ambient conditions.

5.
Sci Rep ; 10(1): 9791, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555227

RESUMO

In recent years, fluorescent nanodiamond (fND) particles containing nitrogen-vacancy (NV) centers gained recognition as an attractive probe for nanoscale cellular imaging and quantum sensing. For these applications, precise localization of fNDs inside of a living cell is essential. Here we propose such a method by simultaneous detection of the signal from the NV centers and the spectroscopic Raman signal from the cells to visualize the nucleus of living cells. However, we show that the commonly used Raman cell signal from the fingerprint region is not suitable for organelle imaging in this case. Therefore, we develop a method for nucleus visualization exploiting the region-specific shape of C-H stretching mode and further use k-means cluster analysis to chemically distinguish the vicinity of fNDs. Our technique enables, within a single scan, to detect fNDs, distinguish by chemical localization whether they have been internalized into cell and simultaneously visualize cell nucleus without any labeling or cell-fixation. We show for the first time spectral colocalization of unmodified high-pressure high-temperature fND probes with the cell nucleus. Our methodology can be, in principle, extended to any red- and near-infrared-luminescent cell-probes and is fully compatible with quantum sensing measurements in living cells.


Assuntos
Núcleo Celular/ultraestrutura , Imagem Molecular/métodos , Nanodiamantes , Linhagem Celular Tumoral , Células Cultivadas , Técnicas Citológicas , Polpa Dentária/citologia , Polpa Dentária/diagnóstico por imagem , Corantes Fluorescentes , Humanos , Análise Espectral Raman
6.
Science ; 363(6428): 728-731, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765564

RESUMO

Nitrogen-vacancy (NV) centers in diamond have become an important instrument for quantum sensing and quantum information science. However, the readout of NV spin state requires bulky optical setups, limiting fabrication of miniaturized compact devices for practical use. Here we realized photoelectrical detection of magnetic resonance as well as Rabi oscillations on a single-defect level. Furthermore, photoelectrical imaging of individual NV centers at room temperature was demonstrated, surpassing conventional optical readout methods by providing high imaging contrast and signal-to-noise ratio. These results pave the way toward fully integrated quantum diamond devices.

7.
Nanoscale ; 5(8): 3208-11, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23314709

RESUMO

A novel approach for preparation of ultra-bright fluorescent nanodiamonds (fNDs) was developed and the thermal and kinetic optimum of NV center formation was identified. Combined with a new oxidation method, this approach enabled preparation of particles that were roughly one order of magnitude brighter than particles prepared with commonly used procedures.


Assuntos
Fluorescência , Corantes Fluorescentes/síntese química , Nanodiamantes/química , Corantes Fluorescentes/efeitos da radiação , Nanodiamantes/efeitos da radiação , Tamanho da Partícula , Prótons , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...