Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Lung Cancer Res ; 11(6): 991-1008, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35832452

RESUMO

Background: The microanatomical steps of malignant pleural mesothelioma (MPM) vascularization and the resistance mechanisms to anti-angiogenic drugs in MPM are unclear. Methods: We investigated the vascularization of intrapleurally implanted human P31 and SPC111 MPM cells. We also assessed MPM cell's motility, invasion and interaction with endothelial cells in vitro. Results: P31 cells exhibited significantly higher two-dimensional (2D) motility and three-dimensional (3D) invasion than SPC111 cells in vitro. In co-cultures of MPM and endothelial cells, P31 spheroids permitted endothelial sprouting (ES) with minimal spatial distortion, whereas SPC111 spheroids repealed endothelial sprouts. Both MPM lines induced the early onset of submesothelial microvascular plexuses covering large pleural areas including regions distant from tumor colonies. The development of these microvascular networks occurred due to both intussusceptive angiogenesis (IA) and ES and was accelerated by vascular endothelial growth factor A (VEGF-A)-overexpression. Notably, SPC111 colonies showed different behavior to P31 cells. P31 nodules incorporated tumor-induced capillary plexuses from the earliest stages of tumor formation. P31 cells deposited a collagenous matrix of human origin which provided "space" for further intratumoral angiogenesis. In contrast, SPC111 colonies pushed the capillary plexuses away and thus remained avascular for weeks. The key event in SPC111 vascularization was the development of a desmoplastic matrix of mouse origin. Continuously invaded by SPC111 cells, this matrix transformed into intratumoral connective tissue trunks, providing a route for ES from the diaphragm. Conclusions: Here, we report two distinct growth patterns of orthotopically implanted human MPM xenografts. In the invasive pattern, MPM cells invade and thus co-opt peritumoral capillary plexuses. In the pushing/desmoplastic pattern, MPM cells induce a desmoplastic response within the underlying tissue which allows the ingrowth of a nutritive vasculature from the pleura.

2.
Sci Rep ; 10(1): 12293, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686692

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 14363, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591456

RESUMO

Endothelial cell motility has fundamental role in vasculogenesis and angiogenesis during developmental or pathological processes. Tks4 is a scaffold protein known to organize the cytoskeleton of lamellipodia and podosomes, and thus modulating cell motility and invasion. In particular, Tks4 is required for the localization and activity of membrane type 1-matrix metalloproteinase, a key factor for extracellular matrix (ECM) cleavage during cell migration. While its role in transformed cells is well established, little is known about the function of Tks4 under physiological conditions. In this study we examined the impact of Tks4 gene silencing on the functional activity of primary human umbilical vein endothelial cells (HUVEC) and used time-lapse videomicrosopy and quantitative image analysis to characterize cell motility phenotypes in culture. We demonstrate that the absence of Tks4 in endothelial cells leads to impaired ECM cleavage and decreased motility within a 3-dimensional ECM environment. Furthermore, absence of Tks4 also decreases the ability of HUVEC cells to form multicellular sprouts, a key requirement for angiogenesis. To establish the involvement of Tks4 in vascular development in vivo, we show that loss of Tks4 leads sparser vasculature in the fetal chorion in the Tks4-deficient 'nee' mouse strain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Citoesqueleto/genética , Matriz Extracelular/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Movimento Celular/genética , Células Endoteliais/metabolismo , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Podossomos/genética , Pseudópodes/genética , Transdução de Sinais/genética
4.
PLoS Comput Biol ; 15(10): e1007431, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652274

RESUMO

Non-muscle myosin II (NMII)-induced multicellular contractility is essential for development, maintenance and remodeling of tissue morphologies. Dysregulation of the cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate that the Matrigel patterning assay, widely used to characterize endothelial cells, is a highly sensitive tool to evaluate cell contractility within a soft extracellular matrix (ECM) environment. We propose a computational model to explore how cell-exerted contractile forces can tear up the cell-Matrigel composite material and gradually remodel it into a network structure. We identify measures that are characteristic for cellular contractility and can be obtained from image analysis of the recorded patterning process. The assay was calibrated by inhibition of NMII activity in A431 epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632 Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first functional demonstration that overexpression of S100A4, a calcium-binding protein that is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by inducing filament disassembly, effectively reduces cell contractility.


Assuntos
Bioensaio/métodos , Colágeno/fisiologia , Proteínas Contráteis/fisiologia , Laminina/fisiologia , Proteoglicanas/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Simulação por Computador , Citoesqueleto/metabolismo , Combinação de Medicamentos , Células Epiteliais/fisiologia , Humanos , Camundongos , Microtúbulos/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
5.
PLoS One ; 13(9): e0203203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30180178

RESUMO

Three-dimensional (3D) printing technology allowed fast and cheap prototype fabrication in numerous segments of industry and it also became an increasingly versatile experimental platform in life sciences. Yet, general purpose software tools to control printer hardware are often suboptimal for bioprinting applications. Here we report a package of open source software tools that we developed specifically to meet bioprinting requirements: Machine movements can be (i) precisely specified using high level programming languages, and (ii) easily distributed across a batch of tissue culture dishes. To demonstrate the utility of the reported technique, we present custom fabricated, biocompatible 3D-printed plastic structures that can control cell spreading area or medium volume, and exhibit excellent optical properties even at 50 ul sample volumes. We expect our software tools to be helpful not only to manufacture customized in vitro experimental chambers, but for applications involving printing cells and extracellular matrices as well.


Assuntos
Bioimpressão/métodos , Técnicas de Cultura de Células/métodos , Impressão Tridimensional , Software , Células 3T3 , Animais , Materiais Biocompatíveis/química , Bioimpressão/instrumentação , Bioimpressão/estatística & dados numéricos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/estatística & dados numéricos , Linhagem Celular , Matriz Extracelular/química , Humanos , Teste de Materiais , Camundongos , Fenômenos Ópticos , Impressão Tridimensional/instrumentação , Impressão Tridimensional/estatística & dados numéricos
7.
J Cell Biol ; 210(5): 771-83, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26304723

RESUMO

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


Assuntos
Actinas/metabolismo , Espinhas Dendríticas/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Proteína Quinase C/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/metabolismo , Sobrevivência Celular , Células Cultivadas , Glicina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Transgênicos , Fármacos Neuromusculares Despolarizantes/farmacologia , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Proteína Quinase C/biossíntese
8.
Cytometry A ; 87(1): 89-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25257846

RESUMO

Dendritic filopodia are tiny and highly motile protrusions formed along the dendrites of neurons. During the search for future presynaptic partners, their shape and size change dynamically, with a direct impact on the formation, stabilization and maintenance of synaptic connections both in vivo and in vitro. In order to reveal molecular players regulating synapse formation, quantitative analysis of dendritic filopodia motility is needed. Defining the length or the tips of these protrusions manually, however, is time consuming, limiting the extent of studies as well as their statistical power. Additionally, area detection based on defining a single intensity threshold can lead to significant errors throughout the image series, as these small structures often have low contrast in fluorescent images. To overcome these problems, the open access Dendritic Filopodia Motility Analyzer, a semi-automated ImageJ/Fiji plugin was created. Our method calculates the displacement of the centre of mass (CoM) within a selected region based on the weighted intensity values of structure forming pixels, selected by upper and lower intensity thresholds. Using synthetic and real biological samples, we prove that the displacement of the weighted CoM reliably characterizes the motility of dendritic protrusions. Additionally, guidelines to define optimal parameters of live cell recordings from dendritic protrusions are provided. © 2014 International Society for Advancement of Cytometry.


Assuntos
Citofotometria/instrumentação , Dendritos/ultraestrutura , Pseudópodes/ultraestrutura , Sinapses/ultraestrutura , Imagem com Lapso de Tempo/instrumentação , Animais , Movimento Celular , Citofotometria/métodos , Dendritos/metabolismo , Embrião de Mamíferos , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Processamento de Imagem Assistida por Computador , Camundongos , Cultura Primária de Células , Pseudópodes/metabolismo , Sinapses/metabolismo , Imagem com Lapso de Tempo/métodos
9.
Mol Biol Cell ; 20(7): 2108-20, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19211839

RESUMO

Protein kinase D (PKD) is known to participate in various cellular functions, including secretory vesicle fission from the Golgi and plasma membrane-directed transport. Here, we report on expression and function of PKD in hippocampal neurons. Expression of an enhanced green fluorescent protein (EGFP)-tagged PKD activity reporter in mouse embryonal hippocampal neurons revealed high endogenous PKD activity at the Golgi complex and in the dendrites, whereas PKD activity was excluded from the axon in parallel with axonal maturation. Expression of fluorescently tagged wild-type PKD1 and constitutively active PKD1(S738/742E) (caPKD1) in neurons revealed that both proteins were slightly enriched at the trans-Golgi network (TGN) and did not interfere with its thread-like morphology. By contrast, expression of dominant-negative kinase inactive PKD1(K612W) (kdPKD1) led to the disruption of the neuronal Golgi complex, with kdPKD1 strongly localized to the TGN fragments. Similar findings were obtained from transgenic mice with inducible, neuron-specific expression of kdPKD1-EGFP. As a prominent consequence of kdPKD1 expression, the dendritic tree of transfected neurons was reduced, whereas caPKD1 increased dendritic arborization. Our results thus provide direct evidence that PKD activity is selectively involved in the maintenance of dendritic arborization and Golgi structure of hippocampal neurons.


Assuntos
Dendritos/enzimologia , Complexo de Golgi/enzimologia , Hipocampo/citologia , Neurônios/enzimologia , Proteína Quinase C/metabolismo , Animais , Compartimento Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Doxiciclina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Genes Dominantes , Genes Reporter , Complexo de Golgi/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...