Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1945, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431663

RESUMO

Early development of the gut ecosystem is crucial for lifelong health. While infant gut bacterial communities have been studied extensively, the infant gut virome remains under-explored. To study the development of the infant gut virome over time and the factors that shape it, we longitudinally assess the composition of gut viruses and their bacterial hosts in 30 women during and after pregnancy and in their 32 infants during their first year of life. Using shotgun metagenomic sequencing applied to dsDNA extracted from Virus-Like Particles (VLPs) and bacteria, we generate 205 VLP metaviromes and 322 total metagenomes. With this data, we show that while the maternal gut virome composition remains stable during late pregnancy and after birth, the infant gut virome is dynamic in the first year of life. Notably, infant gut viromes contain a higher abundance of active temperate phages compared to maternal gut viromes, which decreases over the first year of life. Moreover, we show that the feeding mode and place of delivery influence the gut virome composition of infants. Lastly, we provide evidence of co-transmission of viral and bacterial strains from mothers to infants, demonstrating that infants acquire some of their virome from their mother's gut.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Vírus , Lactente , Humanos , Feminino , Gravidez , Mães , Bacteriófagos/genética , Bactérias/genética
2.
Viruses ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298860

RESUMO

The human gut harbors numerous viruses infecting the human host, microbes, and other inhabitants of the gastrointestinal tract. Most of these viruses remain undiscovered, and their influence on human health is unknown. Here, we characterize viral genomes in gut metagenomic data from 1950 individuals from four population and patient cohorts. We focus on a subset of viruses that is highly abundant in the gut, remains largely uncharacterized, and allows confident complete genome identification­phages that belong to the class Caudoviricetes and possess genome terminal repeats. We detect 1899 species-level units belonging to this subset, 19% of which do not have complete representative genomes in major public gut virome databases. These units display diverse genomic features, are predicted to infect a wide range of microbial hosts, and on average account for <1% of metagenomic reads. Analysis of longitudinal data from 338 individuals shows that the composition of this fraction of the virome remained relatively stable over a period of 4 years. We also demonstrate that 54 species-level units are highly prevalent (detected in >5% of individuals in a cohort). Finally, we find 34 associations between highly prevalent phages and human phenotypes, 24 of which can be explained by the relative abundance of potential hosts.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenoma , Bacteriófagos/genética , Metagenômica , Vírus/genética , Genoma Viral , Sequências Repetidas Terminais
3.
Cell Rep ; 38(2): 110204, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021085

RESUMO

The crAss-like phages are a diverse group of related viruses that includes some of the most abundant viruses of the human gut. To explore their diversity and functional role in human population and clinical cohorts, we analyze gut metagenomic data collected from 1,950 individuals from the Netherlands. We identify 1,556 crAss-like phage genomes, including 125 species-level and 32 genus-level clusters absent from the reference databases used. Analysis of their genomic features shows that closely related crAss-like phages can possess strikingly divergent regions responsible for transcription, presumably acquired through recombination. Prediction of crAss-like phage hosts points primarily to bacteria of the phylum Bacteroidetes, consistent with previous reports. Finally, we explore the temporal stability of crAss-like phages over a 4-year period and identify associations between the abundance of crAss-like phages and several human phenotypes, including depletion of crAss-like phages in inflammatory bowel disease patients.


Assuntos
Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Metagenoma/genética , Adulto , Idoso , Bactérias/genética , Bactérias/virologia , Feminino , Genoma Viral , Humanos , Doenças Inflamatórias Intestinais/virologia , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Países Baixos , Obesidade/virologia , Filogenia
4.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356005

RESUMO

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Assuntos
Arteriviridae/classificação , Arteriviridae/genética , Filogenia , Animais , Arteriviridae/ultraestrutura , Arterivirus/classificação , Arterivirus/genética , Endocitose , Genoma Viral , Primatas , Infecções por Vírus de RNA , Proteínas Virais/genética , Vírion/classificação , Vírion/genética , Vírion/ultraestrutura , Ligação Viral , Replicação Viral
5.
Cell Rep ; 35(7): 109132, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010651

RESUMO

The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet. Using viral enrichment and a de novo assembly-based approach, we demonstrate the quantitative dynamics of the gut virome, including dsDNA, ssDNA, dsRNA, and ssRNA viruses. We observe highly divergent individual viral communities, carrying on an average 2,143 viral genomes, 13.1% of which were present at all 3 time points. In contrast to previous reports, the Siphoviridae family dominates over Microviridae in studied individual viromes. We also show individual viromes to be stable at the family level but to vary substantially at the genera and species levels. Finally, we demonstrate that lower initial diversity of the human gut virome leads to a more pronounced effect of the dietary intervention on its composition.


Assuntos
Dieta Livre de Glúten/métodos , Microbioma Gastrointestinal/imunologia , Viroma/imunologia , Humanos
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33472860

RESUMO

RNA-dependent RNA polymerases (RdRps) of the Nidovirales (Coronaviridae, Arteriviridae, and 12 other families) are linked to an amino-terminal (N-terminal) domain, called NiRAN, in a nonstructural protein (nsp) that is released from polyprotein 1ab by the viral main protease (Mpro). Previously, self-GMPylation/UMPylation activities were reported for an arterivirus NiRAN-RdRp nsp and suggested to generate a transient state primed for transferring nucleoside monophosphate (NMP) to (currently unknown) viral and/or cellular biopolymers. Here, we show that the coronavirus (human coronavirus [HCoV]-229E and severe acute respiratory syndrome coronavirus 2) nsp12 (NiRAN-RdRp) has Mn2+-dependent NMPylation activity that catalyzes the transfer of a single NMP to the cognate nsp9 by forming a phosphoramidate bond with the primary amine at the nsp9 N terminus (N3825) following Mpro-mediated proteolytic release of nsp9 from N-terminally flanking nsps. Uridine triphosphate was the preferred nucleotide in this reaction, but also adenosine triphosphate, guanosine triphosphate, and cytidine triphosphate were suitable cosubstrates. Mutational studies using recombinant coronavirus nsp9 and nsp12 proteins and genetically engineered HCoV-229E mutants identified residues essential for NiRAN-mediated nsp9 NMPylation and virus replication in cell culture. The data corroborate predictions on NiRAN active-site residues and establish an essential role for the nsp9 N3826 residue in both nsp9 NMPylation in vitro and virus replication. This residue is part of a conserved N-terminal NNE tripeptide sequence and shown to be the only invariant residue in nsp9 and its homologs in viruses of the family Coronaviridae The study provides a solid basis for functional studies of other nidovirus NMPylation activities and suggests a possible target for antiviral drug development.


Assuntos
Coronavirus Humano 229E/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos , Asparagina/genética , Linhagem Celular , Sequência Conservada , Coronavirus Humano 229E/fisiologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Humanos , Manganês/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Proteínas não Estruturais Virais/genética
7.
Biochem Biophys Res Commun ; 538: 24-34, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33413979

RESUMO

Two pandemics of respiratory distress diseases associated with zoonotic introductions of the species Severe acute respiratory syndrome-related coronavirus in the human population during 21st century raised unprecedented interest in coronavirus research and assigned it unseen urgency. The two viruses responsible for the outbreaks, SARS-CoV and SARS-CoV-2, respectively, are in the spotlight, and SARS-CoV-2 is the focus of the current fast-paced research. Its foundation was laid down by studies of many corona- and related viruses that collectively form the vast order Nidovirales. Comparative genomics of nidoviruses played a key role in this advancement over more than 30 years. It facilitated the transfer of knowledge from characterized to newly identified viruses, including SARS-CoV and SARS-CoV-2, as well as contributed to the dissection of the nidovirus proteome and identification of patterns of variations between different taxonomic groups, from species to families. This review revisits selected cases of protein conservation and variation that define nidoviruses, illustrates the remarkable plasticity of the proteome during nidovirus adaptation, and asks questions at the interface of the proteome and processes that are vital for nidovirus reproduction and could inform the ongoing research of SARS-CoV-2.


Assuntos
Infecções por Coronaviridae/virologia , Nidovirales/classificação , Nidovirales/genética , Sequência Conservada , Evolução Molecular , Variação Genética , Genômica , Humanos , Filogenia , Proteoma , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , Proteínas Virais
8.
Bioinformatics ; 36(9): 2731-2739, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003788

RESUMO

MOTIVATION: To facilitate accurate estimation of statistical significance of sequence similarity in profile-profile searches, queries should ideally correspond to protein domains. For multidomain proteins, using domains as queries depends on delineation of domain borders, which may be unknown. Thus, proteins are commonly used as queries that complicate establishing homology for similarities close to cutoff levels of statistical significance. RESULTS: In this article, we describe an iterative approach, called LAMPA, LArge Multidomain Protein Annotator, that resolves the above conundrum by gradual expansion of hit coverage of multidomain proteins through re-evaluating statistical significance of hit similarity using ever smaller queries defined at each iteration. LAMPA employs TMHMM and HHsearch for recognition of transmembrane regions and homology, respectively. We used Pfam database for annotating 2985 multidomain proteins (polyproteins) composed of >1000 amino acid residues, which dominate proteomes of RNA viruses. Under strict cutoffs, LAMPA outperformed HHsearch-mediated runs using intact polyproteins as queries by three measures: number of and coverage by identified homologous regions, and number of hit Pfam profiles. Compared to HHsearch, LAMPA identified 507 extra homologous regions in 14.4% of polyproteins. This Pfam-based annotation of RNA virus polyproteins by LAMPA was also superior to RefSeq expert annotation by two measures, region number and annotated length, for 69.3% of RNA virus polyprotein entries. We rationalized the obtained results based on dependencies of HHsearch hit statistical significance for local alignment similarity score from lengths and diversities of query-target pairs in computational experiments. AVAILABILITY AND IMPLEMENTATION: LAMPA 1.0.0 R package is placed at github (https://github.com/Gorbalenya-Lab/LAMPA). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Poliproteínas , Vírus de RNA , Bases de Dados de Proteínas , Proteínas/genética , Software
9.
Virology ; 533: 21-33, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078932

RESUMO

Cavally virus (CavV) is a mosquito-borne plus-strand RNA virus in the family Mesoniviridae (order Nidovirales). We present X-ray structures for the CavV 3C-like protease (3CLpro), as a free enzyme and in complex with a peptide aldehyde inhibitor mimicking the P4-to-P1 residues of a natural substrate. The 3CLpro structure (refined to 1.94 Å) shows that the protein forms dimers. The monomers are comprised of N-terminal domains I and II, which adopt a chymotrypsin-like fold, and a C-terminal α-helical domain III. The catalytic Cys-His dyad is assisted by a complex network of interactions involving a water molecule that mediates polar contacts between the catalytic His and a conserved Asp located in the domain II-III junction and is suitably positioned to stabilize the developing positive charge of the catalytic His in the transition state during catalysis. The study also reveals the structural basis for the distinct P2 Asn-specific substrate-binding pocket of mesonivirus 3CLpros.


Assuntos
Culicidae/virologia , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Nidovirales/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , Cisteína Proteases/genética , Nidovirales/química , Nidovirales/genética , Alinhamento de Sequência , Especificidade por Substrato , Proteínas Virais/genética
10.
PLoS Pathog ; 14(11): e1007314, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383829

RESUMO

RNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication (albeit within a permissive host environment). A 33.5 kilobase (kb) nidovirus has been considered close to the upper size limit for such entities; conversely, the minimal cellular DNA genome is in the 100-300 kb range. This large difference presents a daunting gap for the transition from primordial RNP to contemporary DNA-RNP-based life. Whether or not RNA viruses represent transitional steps towards DNA-based life, studies of larger RNA viruses advance our understanding of the size constraints on RNP entities and the role of genome size in virus adaptation. For example, emergence of the largest previously known RNA genomes (20-34 kb in positive-stranded nidoviruses, including coronaviruses) is associated with the acquisition of a proofreading exoribonuclease (ExoN) encoded in the open reading frame 1b (ORF1b) in a monophyletic subset of nidoviruses. However, apparent constraints on the size of ORF1b, which encodes this and other key replicative enzymes, have been hypothesized to limit further expansion of these viral RNA genomes. Here, we characterize a novel nidovirus (planarian secretory cell nidovirus; PSCNV) whose disproportionately large ORF1b-like region including unannotated domains, and overall 41.1-kb genome, substantially extend the presumed limits on RNA genome size. This genome encodes a predicted 13,556-aa polyprotein in an unconventional single ORF, yet retains canonical nidoviral genome organization and expression, as well as key replicative domains. These domains may include functionally relevant substitutions rarely or never before observed in highly conserved sites of RdRp, NiRAN, ExoN and 3CLpro. Our evolutionary analysis suggests that PSCNV diverged early from multi-ORF nidoviruses, and acquired additional genes, including those typical of large DNA viruses or hosts, e.g. Ankyrin and Fibronectin type II, which might modulate virus-host interactions. PSCNV's greatly expanded genome, proteomic complexity, and unique features-impressive in themselves-attest to the likelihood of still-larger RNA genomes awaiting discovery.


Assuntos
Tamanho do Genoma/genética , Nidovirales/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Evolução Molecular , Genoma/genética , Genoma Viral/genética , Fases de Leitura Aberta , Filogenia , Planárias/virologia , Proteômica/métodos , Vírus de RNA/genética , RNA Viral/genética
11.
Virology ; 524: 160-171, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30199753

RESUMO

Transcriptomics has the potential to discover new RNA virus genomes by sequencing total intracellular RNA pools. In this study, we have searched publicly available transcriptomes for sequences similar to viruses of the Nidovirales order. We report two potential nidovirus genomes, a highly divergent 35.9 kb likely complete genome from the California sea hare Aplysia californica, which we assign to a nidovirus named Aplysia abyssovirus 1 (AAbV), and a coronavirus-like 22.3 kb partial genome from the ornamented pygmy frog Microhyla fissipes, which we assign to a nidovirus named Microhyla alphaletovirus 1 (MLeV). AAbV was shown to encode a functional main proteinase, and a translational readthrough signal. Phylogenetic analysis suggested that AAbV represents a new family, proposed here as Abyssoviridae. MLeV represents a sister group to the other known coronaviruses. The importance of MLeV and AAbV for understanding nidovirus evolution, and the origin of terrestrial nidoviruses are discussed.


Assuntos
Coronaviridae/classificação , Genoma Viral/genética , Infecções por Nidovirales/virologia , Nidovirales/classificação , Transcriptoma , California , Biologia Computacional , Coronaviridae/genética , Coronaviridae/isolamento & purificação , Evolução Molecular , Nidovirales/genética , Nidovirales/isolamento & purificação , Terminação Traducional da Cadeia Peptídica/genética , Peptídeo Hidrolases/genética , Filogenia , Proteínas Virais/genética , Vírion
12.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053107

RESUMO

In five experimentally characterized arterivirus species, the 5'-end genome coding region encodes the most divergent nonstructural proteins (nsp's), nsp1 and nsp2, which include papain-like proteases (PLPs) and other poorly characterized domains. These are involved in regulation of transcription, polyprotein processing, and virus-host interaction. Here we present results of a bioinformatics analysis of this region of 14 arterivirus species, including that of the most distantly related virus, wobbly possum disease virus (WPDV), determined by a modified 5' rapid amplification of cDNA ends (RACE) protocol. By combining profile-profile comparisons and phylogeny reconstruction, we identified an association of the four distinct domain layouts of nsp1-nsp2 with major phylogenetic lineages, implicating domain gain, including duplication, and loss in the early nsp1 evolution. Specifically, WPDV encodes highly divergent homologs of PLP1a, PLP1b, PLP1c, and PLP2, with PLP1a lacking the catalytic Cys residue, but does not encode nsp1 Zn finger (ZnF) and "nuclease" domains, which are conserved in other arteriviruses. Unexpectedly, our analysis revealed that the only catalytically active nsp1 PLP of equine arteritis virus (EAV), known as PLP1b, is most similar to PLP1c and thus is likely to be a PLP1b paralog. In all non-WPDV arteriviruses, PLP1b/c and PLP1a show contrasting patterns of conservation, with the N- and C-terminal subdomains, respectively, being enriched with conserved residues, which is indicative of different functional specializations. The least conserved domain of nsp2, the hypervariable region (HVR), has its size varied 5-fold and includes up to four copies of a novel PxPxPR motif that is potentially recognized by SH3 domain-containing proteins. Apparently, only EAV lacks the signal that directs -2 ribosomal frameshifting in the nsp2 coding region.IMPORTANCE Arteriviruses comprise a family of mammalian enveloped positive-strand RNA viruses that include some of the most economically important pathogens of swine. Most of our knowledge about this family has been obtained through characterization of viruses from five species: Equine arteritis virus, Simian hemorrhagic fever virus, Lactate dehydrogenase-elevating virus, Porcine respiratory and reproductive syndrome virus 1, and Porcine respiratory and reproductive syndrome virus 2 Here we present the results of comparative genomics analyses of viruses from all known 14 arterivirus species, including the most distantly related virus, WPDV, whose genome sequence was completed in this study. Our analysis focused on the multifunctional 5'-end genome coding region that encodes multidomain nonstructural proteins 1 and 2. Using diverse bioinformatics techniques, we identified many patterns of evolutionary conservation that are specific to members of distinct arterivirus species, both characterized and novel, or their groups. They are likely associated with structural and functional determinants important for virus replication and virus-host interaction.


Assuntos
Arterivirus/classificação , Arterivirus/genética , Evolução Molecular , Genes Virais , Genoma Viral , Domínios Proteicos , Proteínas não Estruturais Virais/genética , Biologia Computacional , Variação Genética , Filogenia
13.
Nucleic Acids Res ; 43(17): 8416-34, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26304538

RESUMO

RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies.


Assuntos
Nidovirales/enzimologia , Nucleotidiltransferases/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sítios de Ligação , Sequência Conservada , Equartevirus/enzimologia , Equartevirus/fisiologia , Guanosina/química , Guanosina Trifosfato/metabolismo , Manganês/química , Nidovirales/genética , Nucleotídeos/metabolismo , Nucleotidiltransferases/metabolismo , Fosfatos/química , Poliproteínas/química , Poliproteínas/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Uridina/química , Uridina Trifosfato/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
14.
J Gen Virol ; 96(9): 2643-2655, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041874

RESUMO

The 3'-terminal domain of the most conserved ORF1b in three of the four families of the order Nidovirales (except for the family Arteriviridae) encodes a (putative) 2'-O-methyltransferase (2'-O-MTase), known as non structural protein (nsp) 16 in the family Coronaviridae and implicated in methylation of the 5' cap structure of nidoviral mRNAs. As with coronavirus transcripts, arterivirus mRNAs are assumed to possess a 5' cap although no candidate MTases have been identified thus far. To address this knowledge gap, we analysed the uncharacterized nsp12 of arteriviruses, which occupies the ORF1b position equivalent to that of the nidovirus 2'-O-MTase (coronavirus nsp16). In our in-depth bioinformatics analysis of nsp12, the protein was confirmed to be family specific whilst having diverged much further than other nidovirus ORF1b-encoded proteins, including those of the family Coronaviridae. Only one invariant and several partially conserved, predominantly aromatic residues were identified in nsp12, which may adopt a structure with alternating α-helices and ß-strands, an organization also found in known MTases. However, no statistically significant similarity was found between nsp12 and the twofold larger coronavirus nsp16, nor could we detect MTase activity in biochemical assays using recombinant equine arteritis virus (EAV) nsp12. Our further analysis established that this subunit is essential for replication of this prototypic arterivirus. Using reverse genetics, we assessed the impact of 25 substitutions at 14 positions, yielding virus phenotypes ranging from WT-like to non-viable. Notably, replacement of the invariant phenylalanine 109 with tyrosine was lethal. We concluded that nsp12 plays an essential role during EAV replication, possibly by acting as a co-factor for another enzyme.


Assuntos
Proteínas Arqueais/metabolismo , Coronavirus/enzimologia , Equartevirus/metabolismo , Metiltransferases/metabolismo , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Arterivirus/química , Arterivirus/enzimologia , Arterivirus/genética , Coronavirus/química , Coronavirus/genética , Equartevirus/química , Equartevirus/genética , Metilação , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Poliproteínas/química , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , RNA Viral/genética , RNA Viral/metabolismo , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...