Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 56(1): 226-233, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36644553

RESUMO

Enabling complexation of weak polyelectrolytes, in the presence of a programmable pH-modulation, offers a means to achieve temporal control over polyelectrolyte coassembly. Here, by mixing oppositely charged poly(allylamine hydrochloride) and poly(sodium methacrylate) in a (bi)sulfite buffer, nanoscopic complex coacervates are formed. Addition of formaldehyde initiates the formaldehyde-sulfite clock reaction, affecting the polyelectrolyte assembly in two ways. First, the abrupt pH increase from the reaction changes the charge density of the polyelectrolytes and thus the ratio of cationic and anionic species. Simultaneously, reactions between the polyamine and formaldehyde lead to chemical modifications on the polymer. Interestingly, core-shell polymeric nanoparticles are produced, which remain colloidally stable for months. Contrastingly, in the same system, in the absence of the clock reaction, aggregation and phase separation occur within minutes to days after mixing. Introducing an acid-producing reaction enables further temporal control over the coassembly, generating transient nanoparticles with nanoscopic dimensions and an adjustable lifetime of tens of minutes.

2.
Soft Matter ; 18(39): 7569-7578, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165127

RESUMO

Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.


Assuntos
Bicamadas Lipídicas , Polietilenoglicóis , Coloides , Bicamadas Lipídicas/química , Polietilenoglicóis/química
3.
J Colloid Interface Sci ; 598: 206-212, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905996

RESUMO

HYPOTHESIS: Despite advances in understanding the R5 (SSKKSGSYSGKSGSKRRIL) peptide-driven bio-silica process, there remains significant discrepancies regarding the physicochemical characterization and the self-assembling mechanistic driving forces of the supramolecular R5 template. This paper investigates the self-assembly of R5 as a function of monovalent (sodium chloride) and multivalent salt (phosphate) to determine if assembly is phosphate ion concentration dependent. Additionally, we hypothesize that the assembled R5 aggregates do not resemble a micelle or unimer structure as proposed in current literature. EXPERIMENTS: R5 peptides were synthesized, and aggregates evaluated for their size, morphology, and association state as a function of salt and ionic strength concentration via dynamic and static light scattering, small angle X-ray and neutron scattering and cryogenic transmission electron microscopy. Furthermore, we compare the proposed R5 template to precipitated silica by scanning electron microscopy. FINDINGS: R5 peptides assemble into large aggregates due to multivalence bridging and the decrease in electrostatic repulsion due to ionic strength. We elucidate the structure of R5 aggregates as mass-fractals composed of small spherical aggregates. Moreover, we discover that phosphate ions not only have a significant role in driving the growth of the R5 scaffold, but additionally in driving the polycondensation of silicic acid during the bio-silification process via electrostatic interactions.

4.
Angew Chem Int Ed Engl ; 60(14): 7612-7616, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33444471

RESUMO

Biological processes rely on transient interactions that govern assembly of biomolecules into higher order, multi-component systems. A synthetic platform for the dynamic assembly of multicomponent complexes would provide novel entries to study and modulate the assembly of artificial systems into higher order topologies. Here, we establish a hybrid DNA origami-based approach as an assembly platform that enables dynamic templating of supramolecular architectures. It entails the site-selective recruitment of supramolecular polymers to the platform with preservation of the intrinsic dynamics and reversibility of the assembly process. The composition of the supramolecular assembly on the platform can be tuned dynamically, allowing for monomer rearrangement and inclusion of molecular cargo. This work should aid the study of supramolecular structures in their native environment in real-time and incites new strategies for controlled multicomponent self-assembly of synthetic building blocks.

5.
Chemistry ; 26(66): 15330-15336, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32783243

RESUMO

Silica materials attract an increasing amount of interest in (fundamental) research, and find applications in, for example, sensing, catalysis, and drug delivery. As the properties of these (nano)materials not only depend on their chemistry but also their size, shape, and surface area, the controllable synthesis of silica is essential for tailoring the materials to specific applications. Advantageously, bioinspired routes for silica production are environmentally friendly and straightforward since the formation process is spontaneous and proceeds under mild conditions. These strategies mostly employ amine-bearing phosphorylated (bio)polymers. In this work, we expand this principle to supramolecular polymers based on the water-soluble cationic cyanine dye Pinacyanol acetate. Upon assembly in water, these dye molecules form large, polyaminated, supramolecular fibers. The surfaces of these fibers can be used as a scaffold for the condensation of silicic acid. Control over the ionic strength, dye concentration, and silicic acid saturation yielded silica fibers with a diameter of 25 nm and a single, 4 nm pore. Unexpectedly, other unusual superstructures, namely, nummulites and spherulites, are also observed depending on the ionic strength and dye concentration. Transmission and scanning electron microscopy (TEM and SEM) showed that these superstructures are formed by aligned silica fibers. Close examination of the dye scaffold prior silicification using small-angle X-ray scattering (SAXS), and UV/Vis spectroscopy revealed minor influence of the ionic strength and dye concentration on the morphology of the supramolecular scaffold. Total internal reflection fluorescence (TIRF) during silicification unraveled that if the reaction is kept under static conditions, only silica fibers are obtained. Experiments performed on the dye scaffold and silica superstructures evidenced that the marked structural diversity originates from the arrangement of silica/dye fibers. Under these mild conditions, external force fields can profoundly influence the morphology of the produced silica.


Assuntos
Aminas , Dióxido de Silício , Aminas/química , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Difração de Raios X
6.
Nat Catal ; 3(3): 295-306, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32190819

RESUMO

Living cells regulate key cellular processes by spatial organisation of catalytically active proteins in higher-order signalling complexes. These act as organising centres to facilitate proximity-induced activation and inhibition of multiple intrinsically weakly associating signalling components, which makes elucidation of the underlying protein-protein interactions challenging. Here we show that DNA origami nanostructures provide a programmable molecular platform for the systematic analysis of signalling proteins by engineering a synthetic DNA origami-based version of the apoptosome, a multi-protein complex that regulates apoptosis by co-localizing multiple caspase-9 monomers. Tethering of both wildtype and inactive caspase-9 variants to a DNA origami platform demonstrates that enzymatic activity is induced by proximity-driven dimerization with half-of-sites reactivity, and additionally, reveals a multivalent activity enhancement in oligomers of three and four enzymes. Our results offer fundamental insights in caspase-9 activity regulation and demonstrate that DNA origami-based protein assembly platforms have the potential to inform the function of other multi-enzyme complexes involved in inflammation, innate immunity and cell death.

7.
Nanoscale ; 10(48): 23001-23011, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30500043

RESUMO

Quatsomes (QS) are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long storage such as for several years, they show outstanding vesicle-to-vesicle homogeneity regarding size and lamellarity, and they have the structural and physicochemical requirements to be a potential platform for site-specific delivery of hydrophilic and lipophilic molecules. Knowing in detail the structure and mechanical properties of the QS membrane is of great importance for the design of deformable and flexible nanovesicle alternatives, highly pursued in nanomedicine applications such as the transdermal administration route. In this work, we report the first study on the detailed structure of the cholesterol : CTAB QS membrane at the nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS) in a controlled liquid environment (ionic medium and temperature) to assess the topography of supported QS membranes (SQMs) and to evaluate the local membrane mechanics. We further perform molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, with characteristics of a fluid-like membrane, compact and homogeneous in composition, and with structural and mechanical properties that depend on the surrounding environment. We show how ions alter the lateral packing, modifying the membrane mechanics. We observe that according to the ionic environment and temperature, different domains may coexist in the QS membranes, ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties may be easily tuned by altering the lateral interactions with either different environmental ions or counterions.

8.
Nanoscale ; 10(48): 23199, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30516221

RESUMO

Correction for 'Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics' by Marina I. Giannotti et al., Nanoscale, 2018, 10, 14763-14770.

9.
Biochim Biophys Acta Biomembr ; 1860(12): 2588-2598, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273581

RESUMO

Casein micelles are ~200 nm electronegative particles that constitute 80 wt% of the milk proteins. During synthesis in the lactating mammary cells, caseins are thought to interact in the form of ~20 nm assemblies, directly with the biological membranes of the endoplasmic reticulum and/or the Golgi apparatus. However, conditions that drive this interaction are not yet known. Atomic force microscopy imaging and force spectroscopy were used to directly observe the adsorption of casein particles on supported phospholipid bilayers with controlled compositions to vary their phase state and surface charge density, as verified by X-ray diffraction and zetametry. At pH 6.7, the casein particles adsorbed onto bilayer phases with zwitterionic and liquid-disordered phospholipid molecules, but not on phases with anionic or ordered phospholipids. Furthermore, the presence of adsorbed caseins altered the stability of the yet exposed bilayer. Considering their respective compositions and symmetry/asymmetry, these results cast light on the possible interactions of casein assemblies with the organelles' membranes of the lactating mammary cells.


Assuntos
Caseínas/química , Lipídeos de Membrana/química , Fosfolipídeos/química , Adsorção , Varredura Diferencial de Calorimetria , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Bicamadas Lipídicas/química , Micelas , Microscopia de Força Atômica/métodos , Ligação Proteica , Difração de Raios X
10.
Nanoscale ; 10(30): 14763-14770, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30043793

RESUMO

Cell processes like endocytosis, membrane resealing, signaling and transcription involve conformational changes which depend on the chemical composition and the physicochemical properties of the lipid membrane. The better understanding of the mechanical role of lipids in cell membrane force-triggered and sensing mechanisms has recently become the focus of attention. Different membrane models and experimental methodologies are commonly explored. While general approaches involve controlled vesicle deformation using micropipettes or optical tweezers, due to the local and dynamic nature of the membrane, high spatial resolution atomic force microscopy (AFM) has been widely used to study the mechanical compression and indentation of supported lipid bilayers (SLBs). However, the substrate contribution remains unkown. Here, we demonstrate how pulling lipid tubes with an AFM out of model SLBs can be used to assess the nanomechanics of SLBs through the evaluation of the tube growing force (Ftube), allowing for very local evaluation with high spatial and force resolution of the lipid membrane tension. We first validate this approach to determine the contribution of different phospholipids, by varying the membrane composition, in both one-component and phase-segregated membranes. Finally, we successfully assess the contribution of the underlying substrate to the membrane mechanics, demonstrating that SLB models may represent an intermediate scenario between a free membrane (blebs) and a cytoskeleton supported membrane.


Assuntos
Bicamadas Lipídicas/química , Microscopia de Força Atômica , Fosfolipídeos/química , Membrana Celular , Fenômenos Mecânicos , Modelos Químicos
11.
Nanoscale ; 10(1): 87-92, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29210438

RESUMO

Understanding the physical properties of cholesterol-phospholipid systems is essential to gain a better knowledge of the function of each membrane constituent. We present a novel, simple and user-friendly setup that allows for the straightforward grazing incidence X-ray diffraction characterization of hydrated individual supported lipid bilayers. This configuration minimizes the scattering from the liquid and allows the detection of the extremely weak diffracted signal of the membrane, enabling the differentiation of the coexisting domains in DPPC:cholesterol single bilayers.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Difração de Raios X
12.
Membranes (Basel) ; 6(4)2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27999368

RESUMO

Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.

13.
Soft Matter ; 11(27): 5447-54, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26058499

RESUMO

Galactosylceramides (GalCer) are glycosphingolipids bound to a monosaccharide group, responsible for inducing extensive hydrogen bonds that yield their alignment and accumulation in the outer leaflet of the biological membrane together with cholesterol (Chol) in rafts. In this work, the influence of GalCer on the nanomechanical properties of supported lipid bilayers (SLBs) based on DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DLPC (1,2-didodecanoyl-sn-glycero-3-phosphocoline) as model systems was assessed. Phosphatidylcholine (PC):GalCer SLBs were characterized by means of differential scanning calorimetry (DSC) and atomic force microscopy (AFM), in both imaging and force spectroscopy (AFM-FS) modes. Comparing both PC systems, we determined that the behaviour of SLB mixtures is governed by the PC phase-like state at the working temperature. While a phase segregated system is observed for DLPC:GalCer SLBs, GalCer are found to be dissolved in DPPC SLBs for GalCer contents up to 20 mol%. In both systems, the incorporation of GalCer intensifies the nanomechanical properties of SLBs. Interestingly, segregated domains of exceptionally high mechanical stability are formed in DLPC:GalCer SLBs. Finally, the role of 20 mol% Chol in GalCer organization and function in the membranes was assessed. Both PC model systems displayed phase segregation and remarkable nanomechanical stability when GalCer and Chol coexist in SLBs.


Assuntos
Galactosilceramidas/química , Bicamadas Lipídicas/química , Membrana Celular/química , Colesterol/química , Microscopia de Força Atômica , Modelos Biológicos , Transição de Fase , Fosfatidilcolinas/química , Análise Espectral , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...