Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i247-i256, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940165

RESUMO

MOTIVATION: Acute kidney injury (AKI) is a syndrome that affects a large fraction of all critically ill patients, and early diagnosis to receive adequate treatment is as imperative as it is challenging to make early. Consequently, machine learning approaches have been developed to predict AKI ahead of time. However, the prevalence of AKI is often underestimated in state-of-the-art approaches, as they rely on an AKI event annotation solely based on creatinine, ignoring urine output.We construct and evaluate early warning systems for AKI in a multi-disciplinary ICU setting, using the complete KDIGO definition of AKI. We propose several variants of gradient-boosted decision tree (GBDT)-based models, including a novel time-stacking based approach. A state-of-the-art LSTM-based model previously proposed for AKI prediction is used as a comparison, which was not specifically evaluated in ICU settings yet. RESULTS: We find that optimal performance is achieved by using GBDT with the time-based stacking technique (AUPRC = 65.7%, compared with the LSTM-based model's AUPRC = 62.6%), which is motivated by the high relevance of time since ICU admission for this task. Both models show mildly reduced performance in the limited training data setting, perform fairly across different subcohorts, and exhibit no issues in gender transfer.Following the official KDIGO definition substantially increases the number of annotated AKI events. In our study GBDTs outperform LSTM models for AKI prediction. Generally, we find that both model types are robust in a variety of challenging settings arising for ICU data. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the findings of our manuscript can be found at: https://github.com/ratschlab/AKI-EWS.


Assuntos
Injúria Renal Aguda , Unidades de Terapia Intensiva , Humanos , Aprendizado de Máquina , Masculino , Feminino , Árvores de Decisões , Idoso , Pessoa de Meia-Idade
3.
Bioinformatics ; 36(Suppl_2): i840-i848, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33381811

RESUMO

MOTIVATION: Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered. RESULTS: We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality. AVAILABILITY AND IMPLEMENTATION: S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.


Assuntos
Pesquisa Biomédica , Biomarcadores , Humanos , Fenótipo , Projetos de Pesquisa
4.
Nat Med ; 26(3): 364-373, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32152583

RESUMO

Intensive-care clinicians are presented with large quantities of measurements from multiple monitoring systems. The limited ability of humans to process complex information hinders early recognition of patient deterioration, and high numbers of monitoring alarms lead to alarm fatigue. We used machine learning to develop an early-warning system that integrates measurements from multiple organ systems using a high-resolution database with 240 patient-years of data. It predicts 90% of circulatory-failure events in the test set, with 82% identified more than 2 h in advance, resulting in an area under the receiver operating characteristic curve of 0.94 and an area under the precision-recall curve of 0.63. On average, the system raises 0.05 alarms per patient and hour. The model was externally validated in an independent patient cohort. Our model provides early identification of patients at risk for circulatory failure with a much lower false-alarm rate than conventional threshold-based systems.


Assuntos
Unidades de Terapia Intensiva , Aprendizado de Máquina , Choque/diagnóstico , Estudos de Coortes , Bases de Dados como Assunto , Humanos , Modelos Teóricos , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo
5.
Bioinformatics ; 34(13): i438-i446, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949972

RESUMO

Motivation: Most modern intensive care units record the physiological and vital signs of patients. These data can be used to extract signatures, commonly known as biomarkers, that help physicians understand the biological complexity of many syndromes. However, most biological biomarkers suffer from either poor predictive performance or weak explanatory power. Recent developments in time series classification focus on discovering shapelets, i.e. subsequences that are most predictive in terms of class membership. Shapelets have the advantage of combining a high predictive performance with an interpretable component-their shape. Currently, most shapelet discovery methods do not rely on statistical tests to verify the significance of individual shapelets. Therefore, identifying associations between the shapelets of physiological biomarkers and patients that exhibit certain phenotypes of interest enables the discovery and subsequent ranking of physiological signatures that are interpretable, statistically validated and accurate predictors of clinical endpoints. Results: We present a novel and scalable method for scanning time series and identifying discriminative patterns that are statistically significant. The significance of a shapelet is evaluated while considering the problem of multiple hypothesis testing and mitigating it by efficiently pruning untestable shapelet candidates with Tarone's method. We demonstrate the utility of our method by discovering patterns in three of a patient's vital signs: heart rate, respiratory rate and systolic blood pressure that are indicators of the severity of a future sepsis event, i.e. an inflammatory response to an infective agent that can lead to organ failure and death, if not treated in time. Availability and implementation: We make our method and the scripts that are required to reproduce the experiments publicly available at https://github.com/BorgwardtLab/S3M. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biomarcadores , Mineração de Dados/métodos , Estudos de Associação Genética/métodos , Software , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...