Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335558

RESUMO

When silicon solar cells are used in the novel lightweight photovoltaic (PV) modules using a sandwich design with polycarbonate sheets on both the front and back sides of the cells, they are much more prone to impact loading, which may be prevalent in four-season countries during wintertime. Yet, the lightweight PV modules have recently become an increasingly important development, especially for certain segments of the renewable energy markets all over the world-such as exhibition halls, factories, supermarkets, farms, etc.-including in countries with harsh hailstorms during winter. Even in the standard PV module design using glass as the front sheet, the silicon cells inside remain fragile and may be prone to impact loading. This impact loading has been widely known to lead to cracks in the silicon solar cells that over an extended period of time may significantly degrade performance (output power). In our group's previous work, a 3D helicoidally architected fiber-based polymer composite (enabled by an electrospinning-based additive manufacturing methodology) was found to exhibit excellent impact resistance-absorbing much of the energy from the impact load-such that the silicon solar cells encapsulated on both sides by this material breaks only at significantly higher impact load/energy, compared to when a standard, commercial PV encapsulant material was used. In the present study, we aim to use numerical simulation and modeling to enhance our understanding of the stress distribution and evolution during impact loading on such helicoidally arranged fiber-based composite materials, and thus the damage evolution and mechanisms. This could further aid the implementation of the lightweight PV technology for the unique market needs, especially in countries with extreme winter seasons.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159654

RESUMO

Nanolaminates are extensively studied due to their unique properties, such as impact resistance, high fracture toughness, high strength, and resistance to radiation damage. Varieties of nanolaminates are being fabricated to achieve high strength and fracture toughness. In this study, one such nanolaminate fabricated through accumulative roll bonding (Cu(16)/Nb(16) ARB nanolaminate, where 16 nm is the layer thickness) was used as a test material. Cu(16)/Nb(16) ARB nanolaminate exhibits crystallographic anisotropy due to the existence of distinct interfaces along the rolling direction (RD) and the transverse direction (TD). Nanoindentation was executed using a Berkovich tip, with the main axis oriented either along TD or RD of the Cu(16)/Nb(16) ARB nanolaminate. Subsequently, height profiles were obtained along the main axis of the Berkovich indent for both TD and RD using scanning probe microscopy (SPM), which was later used to estimate the pile-up along the RD and TD. The RD exhibited more pile-up than the TD due to the anisotropy of the Cu(16)/Nb(16) ARB interface and the material plasticity along the TD and RD. An axisymmetric 2D finite element analysis (FEA) was also performed to compare/validate nanoindentation data, such as load vs. displacement curves and pile-up. The FEA simulated load vs. displacement curves matched relatively well with the experimentally generated load-displacement curves, while qualitative agreement was found between the simulated pile-up data and the experimentally obtained pile-up data. The authors believe that pile-up characterization during indentation is of great importance to documenting anisotropy in nanolaminates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...