Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 25(2): 311-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25627927

RESUMO

Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA