Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Discov Ment Health ; 3(1): 15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622027

RESUMO

Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.

3.
Ann Med ; 55(1): 1265-1277, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37096819

RESUMO

BACKGROUND/OBJECTIVE: Iron deficiency (ID) is the most common nutrient deficiency, affecting two billion people worldwide, including about 30% of pregnant women. During gestation, the brain is particularly vulnerable to environmental insults, which can irrevocably impair critical developmental processes. Consequently, detrimental consequences of early-life ID for offspring brain structure and function have been described. Although early life ID has been associated with an increased long-term risk for several neuropsychiatric disorders, the effect on depressive disorders has remained unresolved. MATERIALS AND METHODS: A mouse model of moderate foetal and neonatal ID was established by keeping pregnant dams on an iron-deficient diet throughout gestation until postnatal day 10. The ensuing significant decrease of iron content in the offspring brain, as well as the impact on maternal behaviour and offspring vocalization was determined in the first postnatal week. The consequences of early-life ID for depression- and anxiety-like behaviour in adulthood were revealed employing dedicated behavioural assays. miRNA sequencing of hippocampal tissue of offspring revealed specific miRNAs signatures accompanying the behavioural deficits of foetal and neonatal ID in the adult brain. RESULTS: Mothers receiving iron-deficient food during pregnancy and lactation exhibited significantly less licking and grooming behaviour, while active pup retrieval and pup ultrasonic vocalizations were unaltered. Adult offspring with a history of foetal and neonatal ID showed an increase in depression- and anxiety-like behaviour, paralleled by a deranged miRNA expression profile in the hippocampus, specifically levels of miR200a and miR200b. CONCLUSION: ID during the foetal and neonatal periods has life-long consequences for affective behaviour in mice and leaves a specific and persistent mark on the expression of miRNAs in the brain. Foetal and neonatal ID needs to be further considered as risk factor for the development of depression and anxiety disorders later in life.Key MessagesMarginal reduction of gestational alimentary iron intake decreases brain iron content of the juvenile offspring.Early-life ID is associated with increased depression- and anxiety-like behaviour in adulthood.Reduction of maternal alimentary iron intake during pregnancy is reflected in an alteration of miRNA signatures in the adult offspring brain.


Assuntos
Deficiências de Ferro , MicroRNAs , Efeitos Tardios da Exposição Pré-Natal , Animais , Camundongos , Feminino , Gravidez , Humanos , Ferro , Hipocampo/metabolismo , Encéfalo , MicroRNAs/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/psicologia
4.
EMBO J ; 41(24): e111648, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341708

RESUMO

The ability to care for the young is innate and readily displayed by postpartum females after delivery to ensure offspring survival. Upon pup exposure, rodent virgin (nulliparous) females also develop parental behavior that over time becomes displayed at levels equivalent to parenting mothers. Although maternal behavior in postpartum females and the associated neurocircuits are well characterized, the neural mechanisms underlying the acquisition of maternal behavior without prior experience remain poorly understood. Here, we show that the development of maternal care behavior in response to first-time pup exposure in virgin females is initiated by the activation of the anterior cingulate cortex (ACC). ACC activity is dependent on feedback excitation by Vglut2+ /Galanin+ neurons of the centrolateral nucleus of the thalamus (CL), with their activity sufficient to display parenting behaviors. Accordingly, acute bidirectional chemogenetic manipulation of neuronal activity in the ACC facilitates or impairs the attainment of maternal behavior, exclusively in virgin females. These results reveal an ACC-CL neurocircuit as an accessory loop in virgin females for the initiation of maternal care upon first-time exposure to pups.


Assuntos
Comportamento Materno , Período Pós-Parto , Humanos , Animais , Camundongos , Feminino , Período Pós-Parto/fisiologia , Neurônios/fisiologia , Tálamo , Córtex Pré-Frontal , Comportamento Animal
5.
Transl Psychiatry ; 12(1): 497, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450713

RESUMO

Epidemiological studies indicate a bidirectional association between metabolic disturbances, including obesity and related pathological states, and mood disorders, most prominently major depression. However, the biological mechanisms mediating the comorbid relationship between the deranged metabolic and mood states remain incompletely understood. Here, we tested the hypothesis that the enhanced activation of brown fat tissue (BAT), known to beneficially regulate obesity and accompanying dysfunctional metabolic states, is also paralleled by an alteration of affective behaviour. We used upstream stimulatory factor 1 (USF-1) knock-out (KO) mice as a genetic model of constitutively activated BAT and positive cardiometabolic traits and found a reduction of depression-like and anxiety-like behaviours associated with USF-1 deficiency. Surgical removal of interscapular BAT did not impact the behavioural phenotype of USF-1 KO mice. Further, the absence of USF-1 did not lead to alterations of adult hippocampal neural progenitor cell proliferation, differentiation, or survival. RNA-seq analysis characterised the molecular signature of USF-1 deficiency in the hippocampus and revealed a significant increase in the expression of several members of the X-linked lymphocyte-regulated (xlr) genes, including xlr3b and xlr4b. Xlr genes are the mouse orthologues of the human FAM9 gene family and are implicated in the regulation of dendritic branching, dendritic spine number and morphology. The transcriptional changes were associated with morphological alterations in hippocampal neurons, manifested in reduced dendritic length and complexity in USF-1 KO mice. Collectively these data suggest that the metabolic regulator USF-1 is involved in the control of affective behaviour in mice and that this modulation of mood states is unrelated to USF-1-dependent BAT activation, but reflected in structural changes in the brain.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Adulto , Humanos , Animais , Camundongos , Camundongos Knockout , Transtornos de Ansiedade , Hipocampo
6.
J Neurosci ; 42(40): 7659-7672, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36194650

RESUMO

A strong bidirectional link between metabolic and psychiatric disorders exists; yet, the molecular basis underlying this interaction remains unresolved. Here we explored the role of the brown adipose tissue (BAT) as modulatory interface, focusing on the involvement of uncoupling protein 1 (UCP-1), a key metabolic regulator highly expressed in BAT, in the control of emotional behavior. Male and female constitutive UCP-1 knock-out (KO) mice were used to investigate the consequences of UCP-1 deficiency on anxiety-related and depression-related behaviors under mild thermogenic (23°C) and thermoneutral (29°C) conditions. UCP-1 KO mice displayed a selective enhancement of anxiety-related behavior exclusively under thermogenic conditions, but not at thermoneutrality. Neural and endocrine stress mediators were not affected in UCP-1 KO mice, which showed an activation of the integrated stress response alongside enhanced fibroblast-growth factor-21 (FGF-21) levels. However, viral-mediated overexpression of FGF-21 did not phenocopy the behavioral alterations of UCP-1 KO mice and blocking FGF-21 activity did not rescue the anxiogenic phenotype of UCP-1 KO mice. No effects of surgical removal of the intrascapular BAT on anxiety-like behavior or FGF-21 levels were observed in either UCP-1 KO or WT mice. We provide evidence for a novel role of UCP-1 in the regulation of emotions that manifests as inhibitory constraint on anxiety-related behavior, exclusively under thermogenic conditions. We propose this function of UCP-1 to be independent of its activity in the BAT and likely mediated through a central role of UCP-1 in brain regions with converging involvement in energy and emotional control.SIGNIFICANCE STATEMENT In this first description of a temperature-dependent phenotype of emotional behavior, we propose uncoupling protein-1 (UCP-1), the key component of the thermogenic function of the brown adipose tissue, as molecular break controlling anxiety-related behavior in mice. We suggest the involvement of UCP-1 in fear regulation to be mediated through its expression in brain regions with converging roles in energy and emotional control. These data are important and relevant in light of the largely unexplored bidirectional link between metabolic and psychiatric disorders, which has the potential for providing insight into novel therapeutic strategies for the management of both conditions.


Assuntos
Canais Iônicos , Proteínas Mitocondriais , Camundongos , Masculino , Feminino , Animais , Temperatura , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Tecido Adiposo Marrom/metabolismo , Camundongos Knockout , Ansiedade
7.
Mol Psychiatry ; 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581295

RESUMO

Immune activation is one of the most common complications during pregnancy, predominantly evoked by viral infections. Nevertheless, how immune activation affects mother-offspring relationships postpartum remains unknown. Here, by using the polyinosinic-polycytidylic acid (Poly I:C) model of gestational infection we show that viral-like immune activation at mid-gestation persistently changes hypothalamic neurocircuit parameters in mouse dams and, consequently, is adverse to parenting behavior. Poly I:C-exposed dams favor non-pup-directed exploratory behavior at the expense of pup retrieval. These behavioral deficits are underlain by dendrite pruning and lesser immediate early gene activation in Galanin (Gal)+ neurons with dam-specific transcriptional signatures that reside in the medial preoptic area (mPOA). Reduced activation of an exclusively inhibitory contingent of these distal-projecting Gal+ neurons allows for increased feed-forward inhibition onto putative dopaminergic neurons in the ventral tegmental area (VTA) in Poly I:C-exposed dams. Notably, destabilized VTA output specifically accompanies post-pup retrieval epochs. We suggest that gestational immunogenic insults bias both threat processing and reward perception, manifesting as disfavored infant caregiving.

8.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412538

RESUMO

Ether lipids form a specialized subgroup of phospholipids that requires peroxisomes to be synthesized. We have previously detected that deficiency in these lipids leads to a severe disturbance of neurotransmitter homeostasis and release as well as behavioral abnormalities, such as hyperactivity, in a mouse model. Here, we focused on a more detailed examination of the behavioral phenotype of ether lipid-deficient mice (Gnpat KO) and describe a set of features related to human psychiatric disorders. Gnpat KO mice show strongly impaired social interaction as well as nestlet shredding and marble burying, indicating disturbed execution of inborn behavioral patterns. Also, compromised contextual and cued fear conditioning in these animals suggests a considerable memory deficit, thus potentially forming a connection to the previously determined ether lipid deficit in human patients with Alzheimer's disease. Nesting behavior and the preference for social novelty proved normal in ether lipid-deficient mice. In addition, we detected task-specific alterations in paradigms assessing depression- and anxiety-related behavior. The reported behavioral changes may be used as easy readout for the success of novel treatment strategies against ether lipid deficiency in ameliorating nervous system-associated symptoms. Furthermore, our findings underline that ether lipids are paramount for brain function and demonstrate their relevance for cognitive, social, and emotional behavior. We hereby substantially extend previous observations suggesting a link between deficiency in ether lipids and human mental illnesses, particularly autism and attention-deficit hyperactivity disorder.


Assuntos
Comportamento Animal , Transtornos Mentais/etiologia , Transtornos Mentais/psicologia , Fenótipo , Éteres Fosfolipídicos/metabolismo , Fosfolipídeos/deficiência , Animais , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto , Transtornos Mentais/diagnóstico , Transtornos Mentais/metabolismo , Camundongos , Camundongos Knockout , Neurotransmissores/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo , Comportamento Social
9.
Hum Mol Genet ; 28(12): 2046-2061, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30759250

RESUMO

Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis. Throughout the study, focusing on adult male animals, we found reduced brain levels of various neurotransmitters. In the dopaminergic nigrostriatal tract, synaptic endings but not neuronal cell bodies were affected. Neurotransmitter turnover was altered in ether lipid-deficient murine as well as human post-mortem brain tissue. A generalized loss of synapses did not account for the neurotransmitter deficits, since the levels of several presynaptic proteins appeared unchanged. However, reduced amounts of vesicular monoamine transporter indicate a compromised vesicular uptake of neurotransmitters. As exemplified by norepinephrine, the release of neurotransmitters from Gnpat KO brain slices was diminished in response to strong electrical and chemical stimuli. Finally, addressing potential phenotypic correlates of the disturbed neurotransmitter homeostasis, we show that ether lipid deficiency manifests as hyperactivity and impaired social interaction. We propose that the lack of ether lipids alters the properties of synaptic vesicles leading to reduced amounts and release of neurotransmitters. These features likely contribute to the behavioral phenotype of Gnpat KO mice, potentially modeling some human neurodevelopmental disorders like autism or attention deficit hyperactivity disorder.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Lipídeos/deficiência , Norepinefrina/metabolismo , Aciltransferases/genética , Animais , Sintomas Comportamentais/genética , Sintomas Comportamentais/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Dopamina/deficiência , Éter/química , Éter/metabolismo , Homeostase , Humanos , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Plasmalogênios , Agitação Psicomotora/genética , Agitação Psicomotora/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Habilidades Sociais , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...