Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 98(1): 219-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23615739

RESUMO

The great importance of amide bonds in industrial synthesis has encouraged the search for efficient catalysts of amide bond formation. Microbial transglutaminase (MTG) is heavily utilized in crosslinking proteins in the food and textile industries, where the side chain of a glutamine reacts with the side chain of a lysine, forming a secondary amide bond. Long alkylamines carrying diverse chemical entities can substitute for lysine as acyl-acceptor substrates, to link molecules of interest onto peptides or proteins. Here, we explore short and chemically varied acyl-acceptor substrates, to better understand the nature of nonnatural substrates that are tolerated by MTG, with the aim of diversifying biocatalytic applications of MTG. We show, for the first time, that very short-chain alkyl-based amino acids such as glycine can serve as acceptor substrates. The esterified α-amino acids Thr, Ser, Cys, and Trp--but not Ile--also showed reactivity. Extending the search to nonnatural compounds, a ring near the amine group--particularly if aromatic--was beneficial for reactivity, although ring substituents reduced reactivity. Overall, amines attached to a less hindered carbon increased reactivity. Importantly, very small amines carrying either the electron-rich azide or the alkyne groups required for click chemistry were highly reactive as acyl-acceptor substrates, providing a robust route to minimally modified, "clickable" peptides. These results demonstrate that MTG is tolerant to a variety of chemically varied natural and nonnatural acyl-acceptor substrates, which broadens the scope for modification of Gln-containing peptides and proteins.


Assuntos
Aminas/metabolismo , Aminoácidos/metabolismo , Streptomyces/enzimologia , Transglutaminases/metabolismo , Especificidade por Substrato
2.
J Phys Chem A ; 109(23): 5085-92, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16833862

RESUMO

The high-resolution carbon 1s photoelectron spectrum of trans-1,3-pentadiene has been resolved into contributions from the five inequivalent carbon atoms, and carbon 1s ionization energies have been assigned to each of these atoms. Spectra have also been measured for propene and 1,3-butadiene at better resolution than has previously been available. The ionization energies for the sp2 carbons are found to correlate well with activation energies for electrophilic addition and with proton affinities. Comparing the results for 1,3-pentadiene with those for ethene, propene, and 1,3-butadiene as well as with results of theoretical calculations makes it is possible to assess the effect of the terminal methyl group in 1,3-pentadiene. As in propene, the methyl group contributes electrons to the beta carbon through the pi system. In addition, there is a significant (though smaller) contribution from the methyl group to the terminal (delta) CH2 carbon, also through the pi system. Most of the effect of the methyl group is present in the ground-state molecule. There are only relatively small contributions from the methyl group to the ionization energies from redistribution of charge in the pi system in response to the removal of a core electron. In addition to these specific effects, there is an overall decrease in average ionization energy as the size of the molecule increases as well as effects that are specific to the conjugated systems in 1,3-butadiene and 1,3-pentadiene. The results provide insight into the reactivity and regioselectivity of conjugated dienes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...