Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546774

RESUMO

Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.


Assuntos
Ecossistema , Hidrocarbonetos/análise , Microbiota , Poluição por Petróleo/análise , Petróleo/análise , Biodegradação Ambiental , Hidrocarbonetos/toxicidade , Microbiota/efeitos dos fármacos
2.
J Hazard Mater ; 300: 48-57, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26151384

RESUMO

Bioremediation of trichloroethene (TCE) polluted groundwater is challenging, with limited next generation sequencing (NGS) derived information available on microbial community dynamics associated with dechlorination. Understanding these dynamics is important for designing and improving TCE bioremediation. In this study, biostimulation (BS), biostimulation-bioaugmentation (BS-BA) and monitored natural attenuation (MNA) approaches were applied to contaminated groundwater wells resulted in ≥ 95% dechlorination within 7 months. Vinyl chloride's final concentrations in stimulated wells were between 1.84 and 1.87 µg L(-1), below the US EPA limit of 2.0 µg L(-1), compared to MNA (4.3 µg L(-1)). Assessment of the groundwater microbial community with qPCR showed up to ∼ 50-fold increase in the classical dechlorinators' (Geobacter and Dehalococcoides sp.) population post-treatment. Metagenomic assays revealed shifts from Gammaproteobacteria (pre-treatment) to Epsilonproteobacteria and Deltaproteobacteria (post-treatment) only in stimulated wells. Although stimulated wells were functionally distinct from MNA wells post-treatment, substantial dechlorination in all the wells implied some measure of redundancy. This study, one of the few NGS-based field studies on TCE bioremediation, provides greater insights into dechlorinating microbial community dynamics which should be useful for future field-based studies.


Assuntos
Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , DNA Bacteriano/análise , Água Subterrânea/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...