Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 361: 621-635, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572963

RESUMO

The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 µg of NT3 loaded per SP that weights ~50 µg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 µg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 µg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.


Assuntos
Surdez , Perda Auditiva , Animais , Cobaias , Gatos , Adesivo Tecidual de Fibrina/farmacologia , Ácido Hialurônico , Distribuição Tecidual , Cóclea , Janela da Cóclea/patologia , Janela da Cóclea/cirurgia , Perda Auditiva/terapia , Fatores de Crescimento Neural
2.
Expert Opin Biol Ther ; 22(6): 689-705, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485229

RESUMO

INTRODUCTION: More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED: This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy, and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION: Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Animais , Cóclea/fisiologia , Surdez/cirurgia , Perda Auditiva/terapia , Humanos , Preparações Farmacêuticas
3.
J Control Release ; 342: 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999140

RESUMO

Hearing loss is the most prevalent sensory disorder affecting nearly half a billion people worldwide. Aside from devices to assist hearing, such as hearing aids and cochlear implants, a drug treatment for hearing loss has yet to be developed. The neurotrophin family of growth factors has long been established as a potential therapy, however delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We previously demonstrated that direct delivery of exogenous neurotrophin-3 (NT3) in the guinea pig cochleae via a bolus injection was rapidly cleared from the inner ear, with almost complete elimination 3 days post-treatment. Here, we explored the potential of suprapaticles (SPs) for NT3 delivery to the inner ear to achieve sustained delivery over time. SPs are porous spheroid structures comprised of smaller colloidal silica nanoparticles that provide a platform for long-term controlled release of therapeutics. This study aimed to assess the pharmacokinetics and biodistribution of SP-delivered NT3. We used a radioactive tracer (iodine 125: 125I) to label the NT3 to determine the loading, retention and distribution of NT3 delivered via SPs. Gamma measurements taken from 125I NT3 loaded SPs revealed high drug loading (an average of 5.3 µg of NT3 loaded per SP weighing 50 µg) and elution capacities in vitro (67% cumulative release over one month). Whole cochlear gamma measurements from SP-implanted cochleae harvested at various time points revealed detection of 125I NT3 in the guinea pig cochlea after one month, with 3.6 and 10% of the loaded drug remaining in the intracochlear and round window-implanted cochleae respectively. Autoradiography analysis of cochlear micro-sections revealed widespread 125I NT3 distribution after intracochlear SP delivery, but more restricted distribution with the round window delivery approach. Collectively, drug delivery into the inner ear using SPs support sustained, long-term availability and release of neurotrophins in the inner ear.


Assuntos
Surdez , Orelha Interna , Animais , Cóclea , Surdez/tratamento farmacológico , Cobaias , Humanos , Neurotrofina 3 , Distribuição Tecidual
4.
Sci Rep ; 11(1): 11229, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045604

RESUMO

Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n = 4). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25 µm platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to 'prime' or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation.


Assuntos
Cóclea/metabolismo , Neurônios/metabolismo , Opsinas/metabolismo , Estimulação Acústica , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estimulação Elétrica , Vetores Genéticos , Cobaias , Camundongos , Opsinas/genética , Optogenética/métodos
5.
J Neural Eng ; 17(5): 056046, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33036009

RESUMO

OBJECTIVE: Compared to electrical stimulation, optogenetic stimulation has the potential to improve the spatial precision of neural activation in neuroprostheses, but it requires intense light and has relatively poor temporal kinetics. We tested the effect of hybrid stimulation, which is the combination of subthreshold optical and electrical stimuli, on spectral and temporal fidelity in the cochlea by recording multiunit activity in the inferior colliculus of channelrhodopsin (H134R variant) transgenic mice. APPROACH: Pulsed light or biphasic electrical pulses were delivered to cochlear spiral ganglion neurons of acutely deafened mice, either as individual stimuli or as hybrid stimuli for which the timing of the electrical pulse had a varied delay relative to the start of the optical pulse. Response thresholds, spread of activation and entrainment data were obtained from multi-unit recordings from the auditory midbrain. MAIN RESULTS: Facilitation occurred when subthreshold electrical stimuli were applied at the end of, or up to 3.75 ms after subthreshold optical pulses. The spread of activation resulting from hybrid stimulation was significantly narrower than electrical-only and optical-only stimulation (p < 0.01), measured at equivalent suprathreshold levels of loudness that are relevant to cochlear implant users. Furthermore, temporal fidelity, measured as maximum following rates to 300 ms pulse trains bursts up to 240 Hz, was 2.4-fold greater than optical-only stimulation (p < 0.05). SIGNIFICANCE: By significantly improving spectral resolution of electrical- and optical-only stimulation and the temporal fidelity of optical-only stimulation, hybrid stimulation has the potential to increase the number of perceptually independent stimulating channels in a cochlear implant.


Assuntos
Implantes Cocleares , Surdez , Estimulação Acústica , Animais , Cóclea , Estimulação Elétrica , Camundongos , Optogenética , Gânglio Espiral da Cóclea
6.
MethodsX ; 7: 101078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072529

RESUMO

Hearing loss is the most common sensory deficit worldwide with no approved therapeutics for treatment. Local neurotrophin delivery into the cochlea has shown great potential in protecting and repairing the sensory cells important for hearing. However, delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We have developed a method to test the pharmacokinetics of neurotrophin released from porous silica particles called 'supraparticles' that can provide sustained release of neurotrophins to the inner ear.•This report describes a radiolabeling method to examine neurotrophin retention and distribution in the cochlea. The neurotrophin was labeled with a radioactive tracer (iodine 125: 125I) and delivered into the cochlea via the supraparticle system.•Gamma counts reveal drug levels and clearance in the intact cochlea, as well as accumulation in off-target organs (safety test). Autoradiography analyses using film and emulsion permit quantification and visualization of drug distribution at the cellular level. The method has a detection limit of 0.8 pg of radiolabeled neurotrophin-3 in cochlear sections exposed to film.•The tracer 125I with a half-life of 59.4 days can be used to label other drugs/substances with a tyrosine residue and therefore be broadly applicable for long-term pharmacokinetic studies in other systems.

7.
Front Cell Dev Biol ; 7: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873406

RESUMO

The mouse cochlea contains approximately 15,000 hair cells. Its dimensions and location, and the small number of hair cells, make mechanistic, developmental and cellular replacement studies difficult. We recently published a protocol to expand and differentiate murine neonatal cochlear progenitor cells into 3D organoids that recapitulate developmental pathways and can generate large numbers of hair cells with intact stereociliary bundles, molecular markers of the native cells and mechanotransduction channel activity, as indicated by FM1-43 uptake. Here, we elaborate on the method and application of these Lgr5-positive cochlear progenitors, termed LCPs, to the study of inner ear development and differentiation. We demonstrate the use of these cells for testing several drug candidates, gene silencing and overexpression, as well as genomic modification using CRISPR/Cas9. We thus establish LCPs as a valuable in vitro tool for the analysis of progenitor cell manipulation and hair cell differentiation.

8.
Stem Cells Int ; 2016: 1781202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966437

RESUMO

Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients.

9.
Biores Open Access ; 3(4): 162-75, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126480

RESUMO

Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate patient-matched neurons for transplantation. Here, we used an established neural induction protocol to differentiate two hiPSC lines (iPS1 and iPS2) and one human embryonic stem cell line (hESC; H9) toward a neurosensory lineage in vitro. Immunocytochemistry and qRT-PCR were used to analyze the expression of key markers involved in AN development at defined time points of differentiation. The hiPSC- and hESC-derived neurosensory progenitors expressed the dorsal hindbrain marker (PAX7), otic placodal marker (PAX2), proneurosensory marker (SOX2), ganglion neuronal markers (NEUROD1, BRN3A, ISLET1, ßIII-tubulin, Neurofilament kDa 160), and sensory AN markers (GATA3 and VGLUT1) over the time course examined. The hiPSC- and hESC-derived neurosensory progenitors had the highest expression levels of the sensory neural markers at 35 days in vitro. Furthermore, the neurons generated from this assay were found to be electrically active. While all cell lines analyzed produced functional neurosensory-like progenitors, variabilities in the levels of marker expression were observed between hiPSC lines and within samples of the same cell line, when compared with the hESC controls. Overall, these findings indicate that this neural assay was capable of differentiating hiPSCs toward a neurosensory lineage but emphasize the need for improving the consistency in the differentiation of hiPSCs into the required lineages.

10.
Stem Cell Res ; 12(1): 241-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24280418

RESUMO

In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps), with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31-56 days) and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.


Assuntos
Células-Tronco Embrionárias/citologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Diferenciação Celular , Linhagem Celular , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias/fisiologia , Humanos , Técnicas de Patch-Clamp , Células Receptoras Sensoriais/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
11.
Stem Cell Rev Rep ; 8(3): 741-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21956409

RESUMO

According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.


Assuntos
Implante Coclear , Perda Auditiva Neurossensorial/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Animais , Diferenciação Celular , Sobrevivência Celular , Cóclea/patologia , Nervo Coclear/patologia , Terapia Combinada , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...