Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(24): 14353-14359, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498495

RESUMO

For materials with high oxygen affinity, oxide layers will significantly change the material properties. This is of particular importance for aluminum nanowires which have many applications because of their ultrahigh strengths. Recent studies show that thin amorphous oxide shell layers on aluminum surfaces significantly change the responses of the material. However, the relations between the thickness of the oxidized layer, the strain rate and the mechanical response of nanowires to compression and tension have not been investigated intensively. In this study, we use a ReaxFF potential to analyze the influences of oxide shell layers on the material responses of the nanowires under uniaxial tension and compression at different strain rates. The Al-O interface leads to an increased defect nucleation rate at the oxide interface preventing localized deformation. During tension, we observe a reorganization of the structure of the oxide layer leading to bond healing and preventing fracture. While ductility is increasing with coating thickness during tension, the thickness of the coating is less decisive during compression.

2.
Phys Rev E ; 93(3): 032901, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078430

RESUMO

The coefficient of restitution may be determined from the sound signal emitted by a sphere bouncing repeatedly off the ground. Although there is a large number of publications exploiting this method, so far, there is no quantitative discussion of the error related to this type of measurement. Analyzing the main error sources, we find that even tiny deviations of the shape from the perfect sphere may lead to substantial errors that dominate the overall error of the measurement. Therefore, we come to the conclusion that the well-established method to measure the coefficient of restitution through the emitted sound is applicable only for the case of nearly perfect spheres. For larger falling height, air drag may lead to considerable error, too.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25974482

RESUMO

Using a granular-mechanics code, we study the impact of a highly porous granular body on a hard wall. The projectile consists of monodisperse adhesive micrometer-sized silica grains. For the impact velocities studied, v<0.5m/s, the sample does not fragment, but is compacted. We find that the compaction is proportional to the impact speed. The proportionality constant increases with decreasing porosity. However, the compaction is inhomogeneous and decreases with distance from the target. A compaction wave runs through the aggregate; it slows down while the compaction becomes less efficient.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052204, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493788

RESUMO

We consider the motion of an aspherical inelastic particle of dumbbell type bouncing repeatedly on a horizontal flat surface. The coefficient of restitution of such a particle depends not only on material properties and impact velocity but also on the angular orientation at the instant of the collision whose variance is considerable, even for small eccentricity. Assuming random angular orientation of the particle at the instant of contact we characterize the measured coefficient of restitution as a fluctuating quantity and obtain a wide probability density function including a finite probability for negative values of the coefficient of restitution. This may be understood from the partial exchange of translational and rotational kinetic energy.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25353465

RESUMO

We consider the collision of a rough sphere with a plane by detailed analysis of the collision geometry. Using stochastic methods, the effective coefficient of restitution may be described as a fluctuating quantity whose probability density follows an asymmetric Laplace distribution. This result agrees with recent experiments by Montaine et al. [Phys. Rev. E 84, 041306 (2011)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...