Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6013, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472343

RESUMO

Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.


Assuntos
Actinas , Membrana Nuclear , Membrana Nuclear/metabolismo , Actinas/metabolismo , Movimento Celular , Lâmina Nuclear/metabolismo , Núcleo Celular/metabolismo
2.
bioRxiv ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37398267

RESUMO

Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Further analysis of known rupture contributors, including a newly developed automated quantitative analysis of nuclear lamina gaps, strongly suggests that CTDNEP1 acts in a new pathway. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.

3.
J Autism Dev Disord ; 52(4): 1896-1902, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34009548

RESUMO

The present study evaluated the hypothesis that the strength of the relationship between executive function (EF) and repetitive behaviors and restricted interests (RBRI) symptomatology is moderated by the degree to which concurrent demands are placed on multiple aspects of EF. An eye movement task was used to evaluate inhibition and task switching ability (both together and in isolation) in a sample of 22 children with autism spectrum disorder (ASD). The Repetitive Behavior Scale-Revised (RBS-R) was used to assess the severity of RBRI symptoms. Results provide preliminary support for the aforementioned hypothesis. RBS-R scores were significantly correlated with task performance when simultaneous demands were placed on switching and inhibition; however, no such relationship was found for inhibition-only or switching-only task conditions.


Assuntos
Transtorno do Espectro Autista , Função Executiva , Transtorno do Espectro Autista/diagnóstico , Criança , Cognição , Função Executiva/fisiologia , Humanos , Inibição Psicológica
4.
Life Sci Alliance ; 5(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789512

RESUMO

Micronuclei are derived from missegregated chromosomes and frequently lose membrane integrity, leading to DNA damage, innate immune activation, and metastatic signaling. Here, we demonstrate that two characteristics of the trapped chromosome, length and gene density, are key contributors to micronuclei membrane stability and determine the timing of micronucleus rupture. We demonstrate that these results are not due to chromosome-specific differences in spindle position or initial protein recruitment during post-mitotic nuclear envelope assembly. Micronucleus size strongly correlates with lamin B1 levels and nuclear pore density in intact micronuclei, but, unexpectedly, lamin B1 levels do not completely predict nuclear lamina organization or membrane stability. Instead, small gene-dense micronuclei have decreased nuclear lamina gaps compared to large micronuclei, despite very low levels of lamin B1. Our data strongly suggest that nuclear envelope composition defects previously correlated with membrane rupture only partly explain membrane stability in micronuclei. We propose that an unknown factor linked to gene density has a separate function that inhibits the appearance of nuclear lamina gaps and delays membrane rupture until late in the cell cycle.


Assuntos
Dosagem de Genes , Micronúcleos com Defeito Cromossômico , Membrana Nuclear/metabolismo , Dano ao DNA , Instabilidade Genômica , Laminas/genética , Laminas/metabolismo , Mitose
5.
Mol Genet Metab Rep ; 25: 100647, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32995290

RESUMO

Past murine studies of phenylketonuria (PKU) have documented significant effects on cerebellum at both the gross and cellular levels. The profile of neurocognitive and motor difficulties associated with early-treated PKU (ETPKU) is also consistent with potential cerebellar involvement. Previous neuroanatomical studies of cerebellum in patients with PKU, however, have yielded mixed results. The objective of the present study was to further examine potential differences in cerebellar morphometry between individuals with and without ETPKU. To this end, we analyzed high resolution T1-weighted MR images from a sample of 20 individuals with ETPKU and an age-matched comparison group of 20 healthy individuals without PKU. Measurements of whole brain volume, whole cerebellum volume, cerebellar gray matter volume, and cerebellar white matter volume were collected by means of semiautomatic volumetric analysis. Data analysis revealed no significant group differences in whole brain volume, whole cerebellar volume, or cerebellar white matter volume. A significant reduction in cerebellar gray matter volume, however, was observed for the ETPKU group compared to the non-PKU comparison group. These findings expand on previous animal work suggesting that cerebellar gray matter is impacted by PKU. It is also consistent with the hypothesis that the cognitive difficulties experienced by individuals with ETPKU may be related to disruptions in gray matter. Additional studies are needed to fully elucidate the timing and extent of the impact of ETPKU on cerebellum and the associated neurocognitive consequences.

6.
Mol Biol Cell ; 31(15): 1551-1560, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32459568

RESUMO

Nuclear membrane rupture during interphase occurs in a variety of cell contexts, both healthy and pathological. Membrane ruptures can be rapidly repaired, but these mechanisms are still unclear. Here we show barrier-to-autointegration factor (BAF), a nuclear envelope protein that shapes chromatin and recruits membrane proteins in mitosis, also facilitates nuclear membrane repair in interphase, in part through recruitment of the nuclear membrane proteins emerin and Lem-domain-containing protein 2 (LEMD2) to rupture sites. Characterization of GFP-BAF accumulation at nuclear membrane rupture sites confirmed BAF is a fast, accurate, and persistent mark of nucleus rupture whose kinetics are partially dictated by membrane resealing. BAF depletion significantly delayed nuclear membrane repair, with a larger effect on longer ruptures. This phenotype could be rescued by GFP-BAF, but not by a BAF mutant lacking the Lap2, emerin, Man1 (LEM)-protein binding domain. Depletion of the BAF interactors LEMD2 or emerin, and to a lesser extent lamin A/C, increased the duration of nucleus ruptures, consistent with LEM-protein binding being a key function of BAF during membrane repair. Overall our results suggest a model where BAF is critical for timely repair of large ruptures in the nuclear membrane, potentially by facilitating membrane attachment to the rupture site.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interfase , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Lamina Tipo A/metabolismo , Ligação Proteica
7.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915213

RESUMO

The American Society for Microbiology (ASM) national conference, Microbe, is the flagship meeting for microbiologists across the globe. The presence of roughly 10,000 attendees provides enormous opportunities for networking and learning. However, such a large meeting can be intimidating to many, especially early career scientists, students, those attending alone, and those from historically underrepresented groups. While mentorship is widely valued by ASM and its members, finding concrete ways to develop new and diverse mentoring opportunities can be a challenge. We recognized the need for an initiative aimed at expanding peer-to-peer mentoring, facilitating networking, and providing support for Microbe attendees; therefore, we created the program Binning Singletons for ASM Microbe 2019. The program consisted of five steps named after tools or phenomena in the profession of microbiology: (i) Identify the Singletons (e.g., individuals attending alone), (ii) Bin the Singletons, (iii) Horizontal Transfer, (iv) Quorum Sensing, and (v) Exponential Growth. These steps resulted in the matching of participants unsure of how to get the most out of their conference experience (e.g., singletons) with mentors who assisted with meeting planning, networking, and/or impostor syndrome. Started on social media only a month before ASM Microbe 2019, the program successfully launched despite limited time and resources. Binning Singletons improved inclusivity and networking opportunities for participants at the conference. Here, we discuss what worked, and what can be improved, with an eye toward development of the Binning Singletons model for future conferences to provide opportunities to increase inclusivity, networking, and accessibility for singletons and build a stronger scientific community.


Assuntos
Congressos como Assunto/organização & administração , Tutoria , Microbiologia/organização & administração , Escolha da Profissão , Humanos , Rede Social , Estados Unidos
8.
Front Hum Neurosci ; 10: 377, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27531976

RESUMO

In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.

9.
J Biol Chem ; 287(48): 40618-28, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23055523

RESUMO

BACKGROUND: RNF168 promotes chromosomal break localization of 53BP1 and BRCA1; 53BP1 loss rescues homologous recombination (HR) in BRCA1-deficient cells. RESULTS: RNF168 depletion suppresses HR defects caused by BRCA1 silencing; RNF168 influences HR similarly to 53BP1. CONCLUSION: RNF168 is important for HR defects caused by BRCA1 loss. SIGNIFICANCE: Although RNF168 promotes BRCA1 and 53BP1 localization to chromosomal breaks, RNF168 affects HR similarly to 53BP1. The RING finger nuclear factor RNF168 is required for recruitment of several DNA damage response factors to double strand breaks (DSBs), including 53BP1 and BRCA1. Because 53BP1 and BRCA1 function antagonistically during the DSB repair pathway homologous recombination (HR), the influence of RNF168 on HR has been unclear. We report that RNF168 depletion causes an elevated frequency of two distinct HR pathways (homology-directed repair and single strand annealing), suppresses defects in HR caused by BRCA1 silencing, but does not suppress HR defects caused by disruption of CtIP, RAD50, BRCA2, or RAD51. Furthermore, RNF168-depleted cells can form ionizing radiation-induced foci of the recombinase RAD51 without forming BRCA1 ionizing radiation-induced foci, indicating that this loss of BRCA1 recruitment to DSBs does not reflect a loss of function during HR. Additionally, we find that RNF168 and 53BP1 have a similar influence on HR. We suggest that RNF168 is important for HR defects caused by BRCA1 loss.


Assuntos
Proteína BRCA1/deficiência , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Recombinação Homóloga , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios RING Finger , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
10.
Methods Mol Biol ; 920: 379-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22941618

RESUMO

Chromosomal double strand breaks (DSBs) can be repaired by a number of mechanisms that result in diverse genetic outcomes. To examine distinct outcomes of chromosomal DSB repair, a panel of human cell lines has been developed that contain GFP-based reporters with recognition sites for the rare-cutting endonuclease I-SceI. One set of reporters is used to measure DSB repair events that require access to homology: homology-directed repair, homology-directed repair that requires the removal of a nonhomologous insertion, single strand annealing, and alternative end joining. An additional reporter (EJ5-GFP) is used to measure end joining (EJ) between distal DSB ends of two tandem I-SceI sites. These Distal-EJ events do not require access to homology, and thus are distinct from the repair events described above. Indeed, this assay provides a measure of DSB end protection during EJ, via physical analysis of Distal-EJ products to determine the frequency of I-SceI-restoration. The EJ5-GFP reporter can also be adapted to examine EJ of non-cohesive DSB ends, using co-expression of I-SceI with a non-processive 3' exonuclease (Trex2), which can cause partial degradation of the 4 nucleotide 3' cohesive overhangs generated by I-SceI. Such co-expression of I-SceI and Trex2 leads to measurable I-SceI-resistant EJ products that use proximal DSB ends (Proximal-EJ), as well as distal DSB ends (Distal-EJ). Therefore, this co-expression approach can be used to examine the relative frequency of Proximal-EJ versus Distal-EJ, and hence provide a measure of the fidelity of end utilization during repair of multiple DSBs. In this report, the repair outcomes examined by each reporter are described, along with methods for cell culture, transient expression of I-SceI and Trex2, and repair product analysis.


Assuntos
Cromossomos de Mamíferos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Técnicas Genéticas , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Citometria de Fluxo , Genes Reporter/genética , Células HEK293 , Humanos , Mutagênese , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , Transfecção
11.
J Biol Chem ; 286(49): 42470-42482, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22027841

RESUMO

During repair of multiple chromosomal double strand breaks (DSBs), matching the correct DSB ends is essential to limit rearrangements. To investigate the maintenance of correct end use, we examined repair of two tandem noncohesive DSBs generated by endonuclease I-SceI and the 3' nonprocessive exonuclease Trex2, which can be expressed as an I-SceI-Trex2 fusion. We examined end joining (EJ) repair that maintains correct ends (proximal-EJ) versus using incorrect ends (distal-EJ), which provides a relative measure of incorrect end use (distal end use). Previous studies showed that ATM is important to limit distal end use. Here we show that DNA-PKcs kinase activity and RAD50 are also important to limit distal end use, but that H2AX is dispensable. In contrast, we find that ATM, DNA-PKcs, and RAD50 have distinct effects on repair events requiring end processing. Furthermore, we developed reporters to examine the effects of the transcription context on DSB repair, using an inducible promoter. We find that a DSB downstream from an active promoter shows a higher frequency of distal end use, and a greater reliance on ATM for limiting incorrect end use. Conversely, DSB transcription context does not affect end processing during EJ, the frequency of homology-directed repair, or the role of RAD50 and DNA-PKcs in limiting distal end use. We suggest that RAD50, DNA-PKcs kinase activity, and transcription context are each important to limit incorrect end use during EJ repair of multiple DSBs, but that these factors and conditions have distinct roles during repair events requiring end processing.


Assuntos
Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/química , DNA/química , Transcrição Gênica , Hidrolases Anidrido Ácido , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Modelos Genéticos , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
12.
J Pain ; 12(2): 222-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20797920

RESUMO

UNLABELLED: The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot-plate latency was examined. Comparison of body weight and hot-plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hour prior to testing did not decrease hot-plate latency except for female rats tested on days 2 to 4. Hot-plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all 4 trials, and prior exposure to a room-temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot-plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot-plate latency, but these effects are small and have relatively little impact on morphine antinociception. PERSPECTIVE: This manuscript shows that non-nociceptive factors such as body weight, habituation, and repeated testing can alter hot-plate latency, but these factors do not alter morphine potency. In sum, the hot-plate test is an easy to use and reliable method to assess supraspinally organized nociceptive responses.


Assuntos
Medição da Dor/métodos , Limiar da Dor/fisiologia , Dor/fisiopatologia , Dor/psicologia , Tempo de Reação/fisiologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Temperatura Alta/efeitos adversos , Masculino , Atividade Motora/fisiologia , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
13.
Cell ; 141(2): 243-54, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20362325

RESUMO

Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.


Assuntos
Proteína BRCA1/genética , Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas Cromossômicas não Histona , Quebras de DNA , Proteínas de Ligação a DNA , Feminino , Instabilidade Genômica , Humanos , Camundongos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
14.
PLoS Genet ; 5(10): e1000683, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834534

RESUMO

To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3' exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3' overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2.


Assuntos
Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Mutagênese , Animais , Células Cultivadas , Reparo do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Camundongos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Cell Biol ; 11(7): 881-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543271

RESUMO

Akt kinase is activated by transforming growth factor-beta1 (TGF-beta) in diabetic kidneys, and has important roles in fibrosis, hypertrophy and cell survival in glomerular mesangial cells. However, the mechanisms of Akt activation by TGF-beta are not fully understood. Here we show that TGF-beta activates Akt in glomerular mesangial cells by inducing the microRNAs (miRNAs) miR-216a and miR-217, both of which target PTEN (phosphatase and tensin homologue), an inhibitor of Akt activation. These miRNAs are located within the second intron of a non-coding RNA (RP23-298H6.1-001). The RP23 promoter was activated by TGF-beta and miR-192 through E-box-regulated mechanisms, as shown previously. Akt activation by these miRs led to glomerular mesangial cell survival and hypertrophy, which were similar to the effects of activation by TGF-beta. These studies reveal a mechanism of Akt activation through PTEN downregulation by two miRs, which are regulated by upstream miR-192 and TGF-beta. Due to the diversity of PTEN function, this miR-amplifying circuit may have key roles, not only in kidney disorders, but also in other diseases.


Assuntos
MicroRNAs/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Western Blotting , Células Cultivadas , Hipertrofia/induzido quimicamente , Imuno-Histoquímica , Hibridização In Situ , Células Mesangiais/citologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...