Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 119(31): 10124-30, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26161577

RESUMO

Molecular liquids can develop a fast mode of crystal growth ("GC growth") near the glass transition temperature. This phenomenon remains imperfectly understood with several explanations proposed. We report that GC growth in o-terphenyl conserves the overall volume, despite a 5% higher density of the crystal, and produces fine crystal grains with the same unit cell as normally grown crystals. These results indicate that GC growth continuously creates voids and free surfaces, possibly by fracture. This aspect of the phenomenon has not been considered by previous treatments and is a difficulty for those models that hypothesize a 5% strain without voids. Given the existence of even faster crystal growth on the free surface of molecular glasses, we consider the possibility that GC growth is facilitated by fracture and surface mobility. This notion has support from the fact that GC growth and surface growth are both highly correlated with surface diffusivity and with fast crystal growth along preformed cracks in the glass.


Assuntos
Compostos de Terfenil/química , Calorimetria , Cristalização , Vidro/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Difração de Raios X
2.
J Phys Chem B ; 118(27): 7638-7646, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922278

RESUMO

Organic glasses can grow crystals much faster on the free surface than in the interior, a phenomenon important for fabricating stable amorphous materials. This surface process differs from and is faster than the glass-to-crystal (GC) growth mode existing in the bulk of molecular glasses. We report that similar to GC growth, surface crystal growth terminates if glasses are heated to gain fluidity. In their steady growth below the glass transition temperature Tg, surface crystals rise above the amorphous surface while spreading laterally and are surrounded by depressed grooves. Above Tg, the growth becomes slower, sometimes unstable. This damage is stronger on segregated needles (α indomethacin, nifedipine, and o-terphenyl) than on crystals growing in compact domains (γ indomethacin). This effect arises because the onset of liquid flow causes the wetting and embedding of upward-growing surface crystals. Segregated needles are at greater risk because their slow-growing flanks appear stationary relative to liquid flow at a low temperature. The disruption of surface crystal growth by fluidity supports the view that the process occurs by surface diffusion, not viscous flow. Compared to the bulk GC mode, surface crystal growth is disrupted less abruptly by fluidity. Nevertheless, to the extent that fluidity damages them, both processes are solid-state phenomena terminated in the liquid state.

3.
J Phys Chem B ; 117(35): 10334-41, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23909486

RESUMO

Crystal growth in organic glasses has been studied in the presence of low-concentration polymers. Doping the organic glass nifedipine (NIF) with 1 wt % polymer has no measurable effect on the glass transition temperature Tg of host molecules, but substantially alters the rate of crystal growth, from a 10-fold reduction to a 30% increase at 12 °C below the host Tg. Among the polymers tested, all but polyethylene oxide (PEO) inhibit growth. The inhibitory effects greatly diminish in the liquid state (at Tg + 38 °C), but PEO persists to speed crystal growth. The crystal growth rate varies exponentially with polymer concentration, in analogy with the polymer effect on solvent mobility, though the effect on crystal growth can be much stronger. The ability to inhibit crystal growth is not well ordered by the strength of host-polymer hydrogen bonds, but correlates remarkably well with the neat polymer's Tg, suggesting that the mobility of polymer chains is an important factor in inhibiting crystal growth in organic glasses. The polymer dopants also affect crystal growth at the free surface of NIF glasses, but the effect is attenuated according to the power law us ∝ ub(0.35), where us and ub are the surface and bulk growth rates.


Assuntos
Nifedipino/química , Polímeros/química , Varredura Diferencial de Calorimetria , Cristalização , Vidro/química , Ligação de Hidrogênio , Transição de Fase , Polietilenoglicóis/química , Temperatura de Transição
4.
J Am Chem Soc ; 134(14): 6354-64, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22413815

RESUMO

D-Mannitol belongs to a large and growing family of crystals with helical morphologies (Yu, L. J. Am. Chem. Soc.2003, 125, 6380). Two polymorphs of D-mannitol, α and δ, when grown in the presence of additives such as poly(vinylpyrrolidone) (PVP) or D-sorbitol, form ring-banded spherulites composed of handed helical fibrils, where the helix axes correspond to the radial growth directions. The two polymorphs form helices with opposite senses in the presence of PVP but the same sense in the presence of D-sorbitol. The characteristic dimensions of the fibrils, including thickness, aspect ratio, and pitch, were determined by scanning probe and electron microscopies. These values must form the basis of any theory that presupposes what forces give rise to crystal twisting, a problem that has been broached but unsettled in the literature of polymer crystallization. The interdependence of the rhythmic variations of both linear and circular birefringence, as determined by Mueller matrix microscopy, informs the cooperative organization of mannitol fibers. The microstructure of mannitol ring-banded spherulites compares favorably to that of high polymers and is evaluated within the context of current theories of crystal twisting.

5.
AAPS J ; 14(3): 380-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22434258

RESUMO

We review recent progress toward understanding and enhancing the stability of amorphous pharmaceutical solids against crystallization. As organic liquids are cooled to become glasses, fast modes of crystal growth can emerge. One such growth mode, the glass-to-crystal or GC mode, occurs in the bulk, and another exists at the free surface, both leading to crystal growth much faster than predicted by theories that assume diffusion defines the kinetic barrier of crystallization. These phenomena have received different explanations, and we propose that GC growth is a solid-state transformation enabled by local mobility in glasses and that fast surface crystal growth is facilitated by surface molecular mobility. In the second part, we review recent findings concerning the effect of polymer additives on crystallization in organic glasses. Low-concentration polymer additives can strongly inhibit crystal growth in the bulk of organic glasses, while having weaker effect on surface crystal growth. Ultra-thin polymer coatings can inhibit surface crystallization. Recent work has shown the importance of molecular weight for crystallization inhibitors of organic glasses, besides "direct intermolecular interactions" such as hydrogen bonding. Relative to polyvinylpyrrolidone, the VP dimer is far less effective in inhibiting crystal growth in amorphous nifedipine. Further work is suggested for better understanding of crystallization of amorphous organic solids and the prediction of their stability.


Assuntos
Preparações Farmacêuticas , Polímeros/química , Cristalização , Estabilidade de Medicamentos , Cinética
6.
Chem Rev ; 112(3): 1805-38, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22103741
7.
Chemphyschem ; 12(8): 1558-71, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21370378

RESUMO

Ferdinand Bernauer proposed in his monograph, "Gedrillte" Kristalle (1929), that a great number of simple, crystalline substances grow from solution or from the melt as polycrystalline spherulites with helically twisting radii that give rise to distinct bull's-eye patterns of concentric optical bands between crossed polarizers. The idea that many common molecular crystals can be induced to grow as mesoscale helices is a remarkable proposition poorly grounded in theories of polycrystalline pattern formation. Recent reinvestigation of one of the systems Bernauer described revealed that rhythmic precipitation in the absence of helical twisting accounted for modulated optical properties [Gunn, E. et al. J. Am. Chem. Soc. 2006, 128, 14234-14235]. Herein, the Bernauer hypothesis is re-examined in detail for three substances described in "Gedrillte" Kristalle, potassium dichromate, hippuric acid, and tetraphenyl lead, using contemporary methods of analysis not available to Bernauer, including micro-focus X-ray diffraction, electron microscopy, and Mueller matrix imaging polarimetry. Potassium dichromate is shown to fall in the class of rhythmic precipitates of undistorted crystallites, while hippuric acid spherulites are well described as helical fibrils. Tetraphenyl lead spherulites grow by twisting and rhythmic precipitation. The behavior of tetraphenyl lead is likely typical of many substances in "Gedrillte" Kristalle. Rhythmic precipitation and helical twisting often coexist, complicating optical analyses and presenting Bernauer with difficulties in the characterization and classification of the objects of his interest.

8.
Acc Chem Res ; 43(5): 684-92, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20180582

RESUMO

We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single molecules. Luminophores were used as guests in crystals to reveal aspects of growth mechanisms by labeling surface structures such as steps and kinks. New methods were adopted for measuring and imaging the optical rotatory power of crystals. Chiroptical anisotropies can now be compared with the results of quantum chemical calculations that have emerged in the past 10 years. The rapid determination of the optical rotation and circular dichroism tensors of molecules in crystals, and the interpretation of these anisotropies, remains a subject of future research. Polycrystalline patterns that form far from equilibrium challenged the quantitative interpretation of micrographs when heterogeneities along the optical path and obliquely angled interfaces played large roles. Resulting "artifacts" were nevertheless incisive probes of polycrystalline texture and mesoscale chemistry in simple substances grown far from equilibrium or in biopathological crystals such as Alzheimer's amyloid plaques.

9.
Inorg Chem ; 46(13): 5212-9, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-17511445

RESUMO

In the presence of an excess of pyridine ligand L, osmium tetroxide oxidizes tertiary silanes (Et(3)SiH, (i)Pr(3)SiH, Ph(3)SiH, or PhMe(2)SiH) to the corresponding silanols. With L = 4-tert-butylpyridine ((t)Bupy), OsO(4)((t)Bupy) oxidizes Et(3)SiH and PhMe(2)SiH to yield 100 +/- 2% of silanol and the structurally characterized osmium(VI) mu-oxo dimer [OsO(2)((t)Bupy)(2)](2)(mu-O)(2) (1a). With L = pyridine (py), only 40-60% yields of R(3)SiOH are obtained, apparently because of coprecipitation of osmium(VIII) with [Os(O)(2)py(2)](2)(mu-O)(2) (1b). Excess silane in these reactions causes further reduction of the OsVI products, and similar osmium "over-reduction" is observed with PhSiH(3), Bu(3)SnH, and boranes. The pathway for OsO(4)(L) + R(3)SiH involves an intermediate, which forms rapidly at 200 K and decays more slowly to products. NMR and IR spectra indicate that the intermediate is a monomeric Os(VI)-hydroxo-siloxo complex, trans-cis-cis-Os(O)(2)L(2)(OH)(OSiR(3)). Mechanistic studies and density functional theory calculations indicate that the intermediate is formed by the [3 + 2] addition of an Si-H bond across an O=Os=O fragment. This is the first direct observation of a [3 + 2] intermediate in a sigma-bond oxidation, though such species have previously been implicated in reactions of H-H and C-H bonds with OsO(4)(L) and RuO(4).

10.
J Am Chem Soc ; 128(44): 14234-5, 2006 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17076478

RESUMO

Rhythmic precipitates of centrosymmetric phthalic acid were analyzed by a square-wave mechanically modulated circular extinction imaging microscope. Spherulites were bisected into square-millimeter sized heterochiral domains that are a consequence of circular intensity differential scattering of left and right circularly polarized light. The dissymmetry and chiral amplification indicated optically was confirmed in the microtexture established by atomic force and scanning electron microscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...