Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 5(11): 3510-3519, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33141554

RESUMO

Understanding the binding mechanism between probe-functionalized magnetic nanoparticles (MNPs) and DNA targets or amplification products thereof is essential in the optimization of magnetic biosensors for the detection of DNA. Herein, the molecular interaction forming hybrid structures upon hybridization between DNA-functionalized magnetic nanoparticles, exhibiting Brownian relaxation, and rolling circle amplification products (DNA-coils) is investigated by the use of atomic force microscopy in a liquid environment and magnetic biosensors measuring the frequency-dependent magnetic response and the frequency-dependent modulation of light transmission. This approach reveals the qualitative and quantitative correlations between the morphological features of the hybrid structures with their magnetic response. The suppression of the high-frequency peak in the magnetic response and the appearance of a new peak at lower frequencies match the formation of larger sized assemblies upon increasing the concentration of DNA-coils. Furthermore, an increase of the DNA-coil concentration induces an increase in the number of MNPs per hybrid structure. This study provides new insights into the DNA-MNP binding mechanism, and its versatility is of considerable importance for the mechanistic characterization of other DNA-nanoparticle biosensor systems.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , DNA/genética , Fenômenos Magnéticos , Magnetismo
2.
Sci Rep ; 8(1): 2525, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410462

RESUMO

The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd2Fe14B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn0.55Al0.45C0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

3.
Inorg Chem ; 57(2): 777-784, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298054

RESUMO

The substitutional effects of cobalt in (Fe1-xCox)5PB2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe1-xCox)5PB2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (TC) with increasing cobalt content, from 622 to 152 K for Fe5PB2 and (Fe0.3Co0.7)5PB2, respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune TC to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.

4.
Langmuir ; 31(37): 10296-302, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26309059

RESUMO

A lab-on-a-chip traveling wave magnetophoresis approach for sensitive and rapid protein detection is reported. In this method, a chip-based magnetic microarray comprising lines of micrometer-sized thin film magnetic elements was used to control the movement of magnetic beads (MBs). The MBs and the chip were functionalized, forming a sandwich-type assay. The MBs were transported across a detection area, and the presence of target molecules resulted in the immobilization of MBs within this area. Target quantification was accomplished by MB counting in the detection area using an optical microscope. In order to demonstrate the versatility of the microarray, biotinylated antiavidin was selected as the target protein. In this case, avidin-functionalized MBs and an avidin-functionalized detection area were used. With a total assay time of 1 to 1.5 h (depending on the labeling approach used), a limit of detection in the attomole range was achieved. Compared to on-chip surface plasmon resonance biodetection systems, our method has a larger dynamic range and is about a factor of 500 times more sensitive. Furthermore, our MB transportation system can operate in any chip-based biosensor platform, thereby significantly improving traditional biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Analíticas Microfluídicas/métodos , Proteínas/química , Análise Serial de Proteínas , Proteínas/análise
5.
ACS Appl Mater Interfaces ; 6(22): 20254-60, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25296008

RESUMO

Nanomagnet logic (NML) is a relatively new computation technology that uses arrays of shape-controlled nanomagnets to enable digital processing. Currently, conventional resist-based lithographic processes limit the design of NML circuitry to planar nanostructures with homogeneous thicknesses. Here, we demonstrate the focused electron beam induced deposition of Fe-based nanomaterial for magnetic in-plane nanowires and out-of-plane nanopillars. Three-dimensional (3D) NML was achieved based on the magnetic coupling between nanowires and nanopillars in a 3D array. Additionally, the same Fe-based nanomaterial was used to produce tilt-corrected high-aspect-ratio probes for the accurate magnetic force microscopy (MFM) analysis of the fabricated 3D NML gate arrays. The interpretation of the MFM measurements was supported by magnetic simulations using the Object Oriented MicroMagnetic Framework. Introducing vertical out-of-plane nanopillars not only increases the packing density of 3D NML but also introduces an extra magnetic degree of freedom, offering a new approach to input/output and processing functionalities in nanomagnetic computing.

6.
Nanoscale ; 5(3): 953-60, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23238262

RESUMO

The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe(2)O(3) spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Modelos Químicos , Modelos Moleculares , Anisotropia , Simulação por Computador , Conformação Molecular
7.
J Phys Chem B ; 114(41): 13255-62, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20873713

RESUMO

The present work provides the first real-space analysis of nanobead-DNA coil interactions. Immobilization of oligonucleotide-functionalized magnetic nanobeads in rolling circle amplified DNA-coils was studied by complex magnetization measurements and transmission electron microscopy (TEM), and a statistical analysis of the number of beads hybridized to the DNA-coils was performed. The average number of beads per DNA-coil using the results from both methods was found to be around 6 and slightly above 2 for samples with 40 and 130 nm beads, respectively. The TEM analysis supported an earlier hypothesis that 40 nm beads are preferably immobilized in the interior of DNA-coils whereas 130 nm beads, to a larger extent, are immobilized closer to the exterior of the coils. The methodology demonstrated in the present work should open up new possibilities for characterization of interactions of a large variety of functionalized nanoparticles with macromolecules, useful for gaining more fundamental understanding of such interactions as well as for optimizing a number of biosensor applications.


Assuntos
DNA/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Sequência de Bases , Técnicas Biossensoriais/métodos , Magnetismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular
8.
Lab Chip ; 10(5): 654-61, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20162242

RESUMO

A novel method of controlled transport of proteins immobilized on micrometre-sized magnetic beads in a lab-on-a-chip environment is presented. Bead motion is controlled by lithographically made magnetic elements forming transportation lines in combination with an applied in-plane rotating magnetic field. In this way, transport of attomole amounts of proteins is controlled with micrometre precision. Also, the activity of proteins immobilized on the beads is demonstrated by injecting antibodies into the system. A critical step in developing the method was to reduce sticking forces between beads and substrate during transportation of proteins. Charge interaction was found to be of minor importance compared to hydrophobic forces. To achieve a reliable transport of biologically active proteins, both substrate and beads were coated with polyethylene glycol (PEG) and the protein covered beads were suspended in buffer with surfactants. The described system fulfils all the important unit operations of a microfluidic platform and, as a further advantage, presents less need for microchannels and electric wiring.


Assuntos
Magnetismo/instrumentação , Microquímica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micromanipulação/instrumentação , Proteínas/química , Proteínas/isolamento & purificação , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Anal Chem ; 81(9): 3398-406, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19334737

RESUMO

The possibility for conducting multiplex detection of DNA-sequences using the volume-amplified magnetic nanobead detection assay [Stromberg, M.; Goransson, J.; Gunnarsson, K.; Nilsson, M.; Svedlindh, P. and Strømme, M. Nano Lett. 2008 , 8, 816-821] was investigated. In this methodology, a batch consisting of a mixture of several sizes of probe-tagged magnetic beads was used for detection of several types of targets in the same compartment. Furthermore, a nonlinear least-squares deconvolution procedure of the composite imaginary part of complex magnetization vs frequency spectra based on the Cole-Cole model was applied to analyze the data. The results of a quantitative biplex analysis experiment were compared with the corresponding separate single-target assays. Finally, triplex analysis was briefly demonstrated qualitatively. Biplex and triplex detection were found to perform well qualitatively. Biplex detection was found to enable a rough target quantification. Multiplex detection may become a complement to performing multiple separate single-target assays for, e.g., parallel detection of multiple infectious pathogens. Multiplex detection also permits robust relative quantification and inclusion of an internal control to improve quantification accuracy.


Assuntos
DNA Bacteriano/análise , DNA Bacteriano/genética , Magnetismo , Nanopartículas/química , Sequência de Bases , DNA/genética , Dados de Sequência Molecular , Fatores de Tempo
10.
Nano Lett ; 8(3): 816-21, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18247520

RESUMO

In this letter, we demonstrate a new principle for diagnostics based on DNA sequence detection using single-stranded oligonucleotide tagged magnetic nanobeads. The target DNA is recognized and volume-amplified to large coils by circularization of linear padlock probes through probe hybridization and ligation, followed by rolling circle amplification (RCA). Upon hybridization of the nanobeads in the RCA coils, the complex magnetization spectrum of the beads changes dramatically, induced by the attached volume-amplified target molecules. We show that the magnetization spectrum of the nanobeads can be used for concentration determination of RCA coils down to the pM range, thus creating the opportunity for nonfluorescence-based cost-efficient high-sensitivity diagnostics tool. We also show that the bead incorporation in the coils is diffusion-controlled and consequently may be accelerated by incubating the sample at higher temperatures.


Assuntos
Magnetismo , Nanopartículas/análise , DNA de Cadeia Simples/química , Nanopartículas/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...