Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 119(1): 237-251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38597817

RESUMO

Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064786

RESUMO

Single-molecule imaging is emerging as a revolutionary approach to studying fundamental questions in plants. However, compared with its use in animals, the application of single-molecule imaging in plants is still underexplored. Here, we review the applications, advantages, and challenges of single-molecule fluorescence imaging in plant systems from the perspective of methodology. Firstly, we provide a general overview of single-molecule imaging methods and their principles. Next, we summarize the unprecedented quantitative details that can be obtained using single-molecule techniques compared to bulk assays. Finally, we discuss the main problems encountered at this stage and provide possible solutions.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Imagem Individual de Molécula/métodos
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2797-801, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26904821

RESUMO

The cellular redox states directly affect cell proliferation, differentiation and apoptosis, and the redox states changes is particularly important to the regulation of cell survival or death. Thioredoxin is a kind of oxidation regulatory protein which is widely exists in organisms, and the change of redox states is also an important process in redox regulation. In this work, we have used the site-directed mutagenesis of protein, SDS-polyacrylamide gel electrophoresis fluorescence spectroscopy and circular dichroism etc., to investigate redox states changes between TRX (E. coli) and glutathione peroxidase(GPX3) during their interaction. By observing the fluorescence spectra of TRX and its mutants, we have studied the protein interactions as well as the redox states switching between oxidation state TRX and the reduced state GPX3. The results demonstrate the presence of interactions and electron exchanges occurring between reduced GPX3 and oxidized TRX, which is of significance for revealing the physical and chemical mechanism of TRX in intracellular signal transduction.


Assuntos
Fluorescência , Oxirredução , Apoptose , Dicroísmo Circular , Escherichia coli , Corantes Fluorescentes , Transdução de Sinais , Espectrometria de Fluorescência , Tiorredoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...