Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(19): 27168-27182, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674583

RESUMO

The principle of superposition is a key ingredient for quantum mechanics. A recent work [Phys. Rev. Lett.116, 110403 (2016)10.1103/PhysRevLett.116.110403] has shown that a quantum adder that deterministically generates a superposition of two unknown states is forbidden. Here we consider the implementation of the probabilistic quantum adder in the 3D cavity-transmon system. Our implementation is based on a three-level superconducting transmon qubit dispersively coupled to two cavities. Numerical simulations show that high-fidelity generation of the superposition of two coherent states is feasible with current circuit QED technology. Our method also works for other physical systems such as two optical cavities coupled to a three-level atom or two nitrogen-vacancy center ensembles interacted with one three-level superconducting flux qubit.

2.
Phys Rev E ; 99(3-1): 032112, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999448

RESUMO

Quantum thermal devices which can manage heat as their electronic analogs for the electronic currents have attracted increasing attention. Here a three-terminal quantum thermal device is designed by three coupling qubits interacting with three heat baths with different temperatures. Based on the steady-state behavior solved from the dynamics of this system, it is demonstrated that such a device integrates multiple interesting thermodynamic functions. It can serve as a heat current transistor to use the weak heat current at one terminal to effectively amplify the currents through the other two terminals, to continuously modulate them ranging in a large amplitude, and even to switch on or off the heat currents. It is also found that the three currents are not sensitive to the fluctuation of the temperature at the low-temperature terminal, so it can behave as a thermal stabilizer. In addition, we can utilize one terminal temperature to ideally turn off the heat current at any one terminal and to allow the heat currents through the other two terminals, so it can be used as a thermal valve. Finally, we illustrate that this thermal device can control the heat currents to flow unidirectionally, so it has the function of a thermal rectifier.

3.
Phys Rev E ; 98(2-1): 022118, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253594

RESUMO

A quantum thermal transistor is designed by the strong coupling between one qubit and one qutrit which are in contact with three heat baths with different temperatures. The thermal behavior is analyzed based on the master equation by both the numerical and the approximately analytic methods. It is shown that the thermal transistor, as a three-terminal device, allows a weak modulation heat current (at the modulation terminal) to switch on and off and effectively modulate the heat current between the other two terminals. In particular, the weak modulation heat current can induce the strong heat current between the other two terminals with the multiple-region amplification of heat current. Furthermore, the heat currents are quite robust to the temperature (current) fluctuation at the lower-temperature terminal within a certain range of temperature, and so it can behave as a heat current stabilizer.

4.
Opt Express ; 26(4): 4498-4511, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475300

RESUMO

In a recent remarkable experiment [Sci. Adv. 2, e1501531 (2016)], a 3-qubit quantum Fredkin (i.e., controlled-SWAP) gate was demonstrated by using linear optics. Here we propose a simple experimental scheme by utilizing the dispersive interaction in superconducting quantum circuit to implement a hybrid Fredkin gate with a superconducting flux qubit as the control qubit and two separated quantum memories as the target qudits. The quantum memories considered here are prepared by the superconducting coplanar waveguide resonators or nitrogen-vacancy center ensembles. In particular, it is shown that this Fredkin gate can be realized using a single-step operation and more importantly, each target qudit can be in an arbitrary state with arbitrary degrees of freedom. Furthermore, we show that this experimental scheme has many potential applications in quantum computation and quantum information processing such as generating arbitrary entangled states (discrete-variable states or continuous-variable states) of the two memories, measuring the fidelity and the entanglement between the two memories. With state-of-the-art circuit QED technology, the numerical simulation is performed to demonstrate that two-memory NOON states, entangled coherent states, and entangled cat states can be efficiently synthesized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...