Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1150521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064882

RESUMO

Mytilus coruscus is a dominant shellfish in the Yangtze estuary and its adjacent sea area. Food deprivation often occurs during their growth due to fluctuations in algal abundance caused by seasonal freshwater flushing and high-density aquaculture mode. To investigate the coping strategies of M. coruscus to starvation stress, electron microscopy and differential proteomic analysis were performed on the critical feeding organ gill of the mussels after 9 days of starvation. The electron microscopy results showed that the cilia of the mussel gills were dissolved, and the gaps between gill filaments widened under starvation. Differential proteomic analysis revealed that phagocytosis-related proteins such as ATPeV1E, ATPeV1C, LAMP1_2 and CTSL were significantly upregulated, and the phagocytosis pathway was significantly enriched (p < 0.05). In addition, the corin content in gill and myeloperoxidase level as well as the number of dead cells in blood were both significantly increased (p < 0.05). What's more, proteomic data suggested that immune maintenance, cellular transport and metabolism related pathways were significantly enriched, which illustrated an immune and metabolism responses under starvation. This study reveals for the first time that phagocytosis functions as an essential strategy for M. coruscus to cope with starvation, which provides new scientific knowledge and a theoretical basis for understanding the adaptation mechanisms of mussel to starvation and for rational optimization of mussel culture patterns.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36731219

RESUMO

As a result of global warming, the Mytilus coruscus living attached in the intertidal zone experience extreme and fluctuating changes in temperature, and extreme temperature changes are causing mass mortality of intertidal species. This study explores the transcriptional response of M. coruscus at different temperatures (18 °C, 26 °C, and 33 °C) and different times (0, 12, and 24 h) of action by analyzing the potential temperature of the intertidal zone. In response to high temperatures, several signaling pathways in M. coruscus, ribosome, endocytosis, endoplasmic reticulum stress, protein degradation, and lysosomes, interact to counter the adverse effects of high temperatures on protein homeostasis. Increased expression of key genes, including heat shock proteins (Hsp70, Hsp20, and Hsp110), Lysosome-associated membrane glycoprotein (LAMP), endoplasmic reticulum chaperone (BiP), and baculoviral IAP repeat-containing protein 7 (BIRC7), may further mitigate the effects of heat stress and delay mortality in M. coruscus. These results reveal changes in multiple signaling pathways involved in protein degradation during high-temperature stress, which will contribute to our overall understanding of the molecular mechanisms underlying the response of M. coruscus to high-temperature stress.


Assuntos
Mytilus , Animais , Mytilus/genética , Temperatura , Transcriptoma , Proteólise , Transdução de Sinais
3.
Sci Rep ; 11(1): 14446, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262102

RESUMO

The complete mitochondrial genome (mitogenome) of animals can provide useful information for evolutionary and phylogenetic analyses. The mitogenome of the genus Exhippolysmata (i.e., Exhippolysmata ensirostris) was sequenced and annotated for the first time, its phylogenetic relationship with selected members from the infraorder Caridea was investigated. The 16,350 bp mitogenome contains the entire set of 37 common genes. The mitogenome composition was highly A + T biased at 64.43% with positive AT skew (0.009) and negative GC skew (- 0.199). All tRNA genes in the E. ensirostris mitogenome had a typical cloverleaf secondary structure, except for trnS1 (AGN), which appeared to lack the dihydrouridine arm. The gene order in the E. ensirostris mitogenome was rearranged compared with those of ancestral decapod taxa, the gene order of trnL2-cox2 changed to cox2-trnL2. The tandem duplication-random loss model is the most likely mechanism for the observed gene rearrangement of E. ensirostris. The ML and BI phylogenetic analyses place all Caridea species into one group with strong bootstrap support. The family Lysmatidae is most closely related to Alpheidae and Palaemonidae. These results will help to better understand the gene rearrangements and evolutionary position of E. ensirostris and lay a foundation for further phylogenetic studies of Caridea.


Assuntos
Decápodes , Rearranjo Gênico , Genoma Mitocondrial , Filogenia , Animais , Aberrações Cromossômicas , Ordem dos Genes
4.
Sci Rep ; 11(1): 11748, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083683

RESUMO

Neritidae is one of the most diverse families of Neritimorpha and possesses euryhaline properties. Members of this family usually live on tropical and subtropical coasts and are mainly gregarious. The phylogenetic relationships between several subclasses of Gastropoda have been controversial for many years. With an increase in the number of described species of Neritidae, the knowledge of the evolutionary relationships in this family has improved. In the present study, we sequenced four complete mitochondrial genomes from two genera (Clithon and Nerita) and compared them with available complete mitochondrial genomes of Neritidae. Gene order exhibited a highly conserved pattern among three genera in the Neritidae family. Our results improved the phylogenetic resolution within Neritidae, and more comprehensive taxonomic sampling of subclass Neritimorpha was proposed. Furthermore, we reconstructed the divergence among the main lineages of 19 Neritimorpha taxa under an uncorrelated relaxed molecular clock.


Assuntos
Gastrópodes/classificação , Gastrópodes/genética , Genoma Mitocondrial , Mitocôndrias/genética , Filogenia , Animais , Composição de Bases , Códon , Biologia Computacional/métodos , Rearranjo Gênico , Genes Mitocondriais , Genômica/métodos , Anotação de Sequência Molecular , Seleção Genética
5.
Sci Rep ; 10(1): 19277, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159159

RESUMO

To improve the systematics and taxonomy of Patellogastropoda within the evolution of gastropods, we determined the complete mitochondrial genome sequences of Lottia goshimai and Nipponacmea fuscoviridis in the family Lottiidae, which presented sizes of 18,192 bp and 18,720 bp, respectively. In addition to 37 common genes among metazoa, we observed duplication of the trnM gene in L. goshimai and the trnM and trnW genes in N. fuscoviridis. The highest A + T contents of the two species were found within protein-coding genes (59.95% and 54.55%), followed by rRNAs (56.50% and 52.44%) and tRNAs (56.42% and 52.41%). trnS1 and trnS2 could not form the canonical cloverleaf secondary structure due to the lack of a dihydrouracil arm in both species. The gene arrangements in all Patellogastropoda compared with those of ancestral gastropods showed different levels of gene rearrangement, including the shuffling, translocation and inversion of single genes or gene fragments. This kind of irregular rearrangement is particularly obvious in the Lottiidae family. The results of phylogenetic and gene rearrangement analyses showed that L. goshimai and Lottia digitalis clustered into one group, which in turn clustered with N. fuscoviridis in Patellogastropoda. This study demonstrates the significance of complete mitogenomes for phylogenetic analysis and enhances our understanding of the evolution of Patellogastropoda.


Assuntos
Gastrópodes/genética , Genoma Microbiano , Animais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...