Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pestic Sci ; 46(4): 342-351, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34908894

RESUMO

In order to understand the degradation of different residual pesticides of white clover silage and their influence on silage quality, three commonly used orchard pesticides with different concentrations were added to the white clover and fermented for 90 days. The results showed that the degradation rate of cypermethrin and its toxic degradation product 3-phenoxybenzoic acid (3-PBA) was the highest after silage, at different concentrations, both were 100%. The degradation rate of Tebuconazole and chloropyridine was 72.47-80.27% and 47.76-64.82%, of which 3,5,6-trichloro-2-pyridinol (TCP) content, poisonous toxic degradation product, increased 0.0525-0.253 mg·kg-1. The residues of beta-cypermethrin and tebuconazole had reached safety standards after silage. As compared with the control, the contents of lactic acid, acetic acid, and propionic acid increased in the treated samples. The higher concentrations of three pesticides all significantly reduced the lactic acid content of silage (p<0.05). Pesticides had different effects on the nutritional components of white clover silage. Conclusively, silage is a potential way to expand the utilization of covering plants in orchards.

2.
RSC Adv ; 9(22): 12436-12440, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35515851

RESUMO

It is the consensus of researchers that the reuse of natural resources is an effective way to solve the problems of environmental pollution, waste and overcapacity. Moreover, compared with the case of inorganic materials, the renewability of natural biomaterials has great prominent advantages. In this study, keratin, which was first extracted from hair due to its high content in hair, was chosen as a functional layer for the fabrication of a resistance switching device with the Ag/keratin/ITO structure; in this device, a stable resistive switching memory behavior with good retention characteristic was observed. Via mechanism analysis, it is expected that there is hopping conduction at low biases, and the formation of a conductive filament occurs at high biases. Furthermore, our device exhibited a stable switching behavior with different conductive materials (Ti and FTO) as bottom electrodes, and the influence of Ag and graphite conductive nanoparticles (NPs) doped into the keratin layer on the switching performance of the device was also investigated. This study not only suggests that keratin is a potential biomaterial for the preparation of memory devices, but also provides a promising route for the fabrication of bio-electronic devices with non-toxicity, degradability, sustainability etc.

3.
Int J Mol Sci ; 18(5)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534853

RESUMO

Previous studies have demonstrated that the marine compound austrasulfone, isolated from the soft coral Cladiella australis, exerts a neuroprotective effect. The intermediate product in the synthesis of austrasulfone, dihydroaustrasulfone alcohol, attenuates several inflammatory responses. The present study uses in vitro and in vivo methods to investigate the neuroprotective effect of dihydroaustrasulfone alcohol-modified 1-tosylpentan-3-one (1T3O). Results from in vitro experiments show that 1T3O effectively inhibits 6-hydroxydopamine-induced (6-OHDA-induced) activation of both p38 mitogen-activated protein kinase (MAPK) and caspase-3 in SH-SY5Y cells; and enhances nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Hoechst staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining results reveal that 1T3O significantly inhibits 6-OHDA-induced apoptosis. In addition, the addition of an Akt or HO-1 inhibitor decreases the protective effect of 1T3O. Thus, we hypothesize that the anti-apoptotic activity of 1T3O in neuronal cells is mediated through the regulation of the Akt and HO-1 signaling pathways. In vivo experiments show that 1T3O can reverse 6-OHDA-induced reduction in locomotor behavior ability in zebrafish larvae, and inhibit 6-OHDA-induced tumor necrosis factor-alpha (TNF-α) increase at the same time. According to our in vitro and in vivo results, we consider that 1T3O exerts its anti-apoptotic activities at SH-SY5Y cells after 6-OHDA challenges, probably via the regulation of anti-oxidative signaling pathways. Therefore, this compound may be a promising therapeutic agent for neurodegenerations.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/efeitos adversos , Pentanos/farmacologia , Pentanonas/farmacologia , Compostos de Tosil/farmacologia , Animais , Antozoários/química , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pentanos/química , Pentanonas/química , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Tosil/química , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...