Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(39): 13951-13960, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528985

RESUMO

Since the large reaction energy barrier caused by multi-step electron transfer processes of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) gravely restricts the practical application of electrocatalytic water splitting, it is urgent to develop a dual-functional electrocatalyst which can effectively reduce the reaction energy barrier and actually speed up the reaction. Herein, the Ru species are doped into the complex of magnetite and FeNi-layered double hydroxide by a one-step oil bath method, and a self-supporting binder-free bifunctional electrocatalyst was synthesized on the surface of iron foam (named Ru-Fe3O4@FeNi-LDH/IF). The unique 3D core-shell microflower structure of Ru-Fe3O4@FeNi-LDH/IF, the combination of active ingredient and conductive substrate, together with the doping of Ru may immensely provide a large number of active sites, adjust the electronic structure, accelerate electron transfer, and thus greatly improve the electrocatalytic activity and durability. It is worth mentioning that when Ru-Fe3O4@FeNi-LDH/IF is used as the anode and cathode for overall water splitting, only 1.52 V battery voltage can generate a current density of 10 mA cm-2, and also maintain a prominent stability for at least 36 hours. This work provides a feasible strategy for heteroatom-doping LDH as a bifunctional electrocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...