Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(1): 181-193, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216470

RESUMO

To explore the distribution characteristics, blooming risk mechanism and driving factors of phytoplankton community structure in Fuchunjiang Reservoir. The variation characteristics of phytoplankton, zooplankton and physicochemical indicators in Fuchunjiang Reservoir and its upper and lower reaches were investigated in 2020 and 2021. Based on the phytoplankton functional groups, non-metric multidimensional scale analysis, redundancy analysis and other statistical methods, the seasonal succession characteristics and driving factors of phytoplankton functional groups were analyzed. A total of 18 phytoplankton functional groups were identified, in of which 10 were predominant. The composition of phytoplankton functional groups in the Fuchunjiang Reservoir was significant different. Spatially, the upstream were dominated by group C and P while the represent species were Cyclotella and Aulacoseira,reflecting the mixed meso-eutrophic environments. However, group P was the main group in Fuchunjiang reservoir, and the dominance decreased gradually along the stream direction. Meanwhile, in the downstream, MP has an absolute advantage at Qiantang River estuary. It reflected the environmental characteristics of frequent disturbance and high turbidity of tide-sensing rivers. In addition, the predominant functional groups demonstrated strong seasonal variations. The dominant functional groups were diverse in summer and consisted of P+L0+J+M+S1+H1+MP. In addition to group P (Aulacoseira), which was dominant throughout the year, it also included several groups represented by cyanobacteria and chlorophyta, reflecting the environmental characteristics of changeable habitats and vigorous productivity. In autumn, the succession was dominated by H1 group represented by Dolichospermum and the representative function groups were P and H1, reflecting the hydrological background of reduced flow and static flow. In winter, the increase of Cyclotella led to the predominance of group C, which was dominated by P+C, reflecting the changing conditions of weakened water exchange and intensified eutrophication problems. In spring, the dominant functional groups were gradually enriched and were composed of C, D, P, and MP, which also reflected the changing environmental habitat characteristics which caused by increasing rainfall and air temperature. According to the results of the C-R-S growth strategy, the Fuchunjiang Reservoir has been in the R strategy for a long time, which was consistent with the habitat characteristics of Fuchunjiang Reservoir and its upper and lower reaches with high disturbance and low stress. In addition, C strategy and S strategy appeared in some reaches, reflecting the variability of water quality and hydrology. RDA analysis showed that water temperature, discharge, zooplankton biomass, permanganate index, total nitrogen and total phosphorus were significantly correlated with the seasonal succession of phytoplankton functional groups (P < 0.05), and temperature and flow pattern were probably the most critical factors for the succession. Studies have shown that the impact of hydrometeorological processes on phytoplankton in the Fuchunjiang Reservoir is crucial:high temperature and changing discharge during the summer may lead to cyanobacterial blooms in the Fuchunjiang reservoir; To reduce the risk of algal blooms, it is still necessary to increase the control of nitrogen and phosphorus load in rivers, and fully consider the coordination of water conservancy dispatch methods.


Assuntos
Cianobactérias , Diatomáceas , Fitoplâncton , Monitoramento Ambiental , Estações do Ano , Nitrogênio/análise , Fósforo/análise , Eutrofização , China
2.
Huan Jing Ke Xue ; 43(7): 3575-3586, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791541

RESUMO

Clear vertical variations in phytoplankton community structure are usually observed in deep-water lakes and reservoirs, which is one of the key components of water quality and ecosystem functioning. However, the vertical patterns and ecological drivers of phytoplankton communities in deep-water lakes and reservoirs are still understudied. In this study, we took Qiandao Lake, a deep-water reservoir, as an example to reveal the vertical distribution characteristics of phytoplankton communities and its influencing factors by investigating phytoplankton community structure and the associated water quality index at 12 sites across the whole lake in two seasons (spring and autumn). The results showed that the phytoplankton abundance and chlorophyll a were highest in the surface layer in autumn and then decreased toward deep water, whereas in spring, the maximum value occurred in the subsurface layer (2-5 m), and the dominant phytoplankton species showed obvious vertical stratification characteristics. Specifically, in spring, Cryptomonas and Pseudanabaena dominated the surface and subsurface layers, Cryptomonas dominated in the middle layer, and the abundance of Cyclotella at the bottom layer was significantly higher than that of the other algae genera. The dominant genera in autumn were Pseudanabaena and Aphanizomenon. In the subsurface and middle layers, Leptolyngbya and Pseudanabaena occupied the dominant position, and Leptolyngbya became the only dominant genus. In the bottom layer, Leptolyngbya was the only dominant genus. The key environmental indicators of the water also had obvious vertical changes. The contents of N and P nutrients had a negative correlation with the water depth in spring, whereas the reverse trend was observed in autumn. The correlation analysis showed that the vertical variation in phytoplankton abundance in spring was significantly positively correlated with phosphate concentration, whereas the vertical distribution of phytoplankton abundance in autumn was significantly positively correlated with intensity of light, and the water temperature, NH4+-N, and total nitrogen were the main factors driving the vertical changes in the dominant genera of phytoplankton community in the two seasons. To summarize, environmental conditions such as water temperature, light, and nutrients had strong effects on the vertical distribution of phytoplankton. In the ecological investigation and quality assessment of deep-water lakes and reservoirs, the vertical distribution characteristics of the phytoplankton community structure and the influence of environmental conditions should be fully considered.


Assuntos
Lagos , Fitoplâncton , Clorofila A , Ecossistema , Estações do Ano
3.
Huan Jing Ke Xue ; 39(3): 1129-1140, 2018 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965457

RESUMO

The proliferation of diatoms is an ecological disaster that harms the water quality of many reservoirs in China. In order to reveal the driving factors of abnormal algal blooms in reservoirs, phytoplankton community structure and the associated environmental factors from 2009 to 2016 from Shahe Reservoir in Tianmuhu were analyzed. Results showed that diatoms and there dominant genus were predominately driven by temperature, and the relationship between hydrology and nutrition was insignificant. Distinct relationships were recorded between different diatom genera and temperature over the past eight years. The optimum growth temperature of diatoms and Synedra were both 27℃, while that for Cyclotella and Achnanthes were both 19℃. Low temperature was suitable for the growth of Melosira, and its growth was compromised with increasing temperature. In a multivariable statistical analysis of the dominant diatom genus and the associated environmental factors, we found that the dominant diatom genus responded differently to the associated environmental factors. The total biomass of the diatom and the biomass of Synedra and Achnanthes were significantly and positively correlated with rainfall (P<0.05). The biomass of Cyclotella was significantly and positively correlated with total phosphorus, rainfall, and water level (P<0.05) and significantly and negatively correlated with water exchange rate (P<0.05). The biomass of Melosira was significantly and positively correlated with total phosphorus. The annual peak biomass of diatoms can be predicted by a multiple regression model with independent variables, including rainfall intensity, dissolved total phosphorus, and the accumulated temperature in winter and spring. Our results indicated that the proliferation of diatoms responds significantly to hydrological and meteorological factors while insignificantly to nitrogen and phosphorus loading. External load reduction is needed to maintain a good water quality in the reservoir. In addition, extreme weather conditions should be given attention to provide an early warning for diatom proliferation.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Proliferação Nociva de Algas , Fósforo/análise , Temperatura , Biomassa , China , Água Doce/análise , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano
4.
Huan Jing Ke Xue ; 39(6): 2632-2640, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965618

RESUMO

Based on the one-year hourly water temperature profiles and the associated environmental drivers during the past eight years in Shahe Reservoir, Jiangsu Province, China from 2009 to 2016, the factors underlying the seasonal variation of thermal stratification and water quality response were investigated. It was shown that the thermal stratification was a typical subtropical one-cycle mixing model, lasting from May to September. The thermal stratification appeared and disappeared when the surface water temperature was 21 ℃ in the late spring and 19 ℃ in the middle of autumn. The difference between the water temperature at the epilimnion and hypolimnion increased with increasing solar radiation. When the air temperature was above 30 ℃, the stability of the thermal stratification increased. Heavy storms reduced the temperature of the surface water and weakened the temperature stratification of the column above a 5 m depth but had limited impact on the stratification of the hypolimnion deeper than 5 m. The thermal stratification greatly impacted the water quality of the lake. Hypoxia in the bottom water occurred by thermal stratification, leading to increased NH4+-N. The concentrations of dissolved oxygen, total phosphorus, and suspended solids in the hypolimnion increased after the disappearance of thermal stratification. Our results indicated that the thermal stratification was mainly controlled by solar radiation and the thermal stratification favored the growth of cyanobacteria and led to the release of nutrients from the sediment, threatening the water quality. Attention should be paid to thermal stratification to prevent algal blooms and related water quality deterioration.

5.
Huan Jing Ke Xue ; 38(10): 4160-4168, 2017 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965199

RESUMO

Monthly investigations of the phytoplankton community and the associated environmental drivers during the past eight years in the Shahe Reservoir, Jiangsu Province, China revealed the spatial and temporal variations of phytoplankton and the associated driving factors in the reservoir. The results show that the concentrations of total nitrogen (TN), total phosphorous (TP), turbidity (Turb), suspended solids (SS), and chlorophyll-a (CHL) were the highest in the upstream tributaries and the lowest in the downstream-linked reservoir. In contrast, the highest Secchi disk depth (SDD) was recorded in the Shahe Reservoir and that the lowest in the upstream tributaries. Significant differences in water quality indices were recorded among the upstream tributaries, the transition region, and the downstream-linked reservoir area (ANOVA, P<0.05). The biomass of phytoplankton was the highest in the upstream tributaries and the lowest in the reservoir. The highest biomass of phytoplankton was recorded in the summer and the lowest in the winter. Synedra, Cyclotella, Cryptomonas, and Achnanthes were the dominant genera in the spring; Synedra, Cryptomonas, Raphidiopsis, and Phormidium were dominant in the summer; Cryptomonas, Synedra, Raphidiopsis, and Aphanizomenon were dominant in the autumn; and Cryptomonas, Synedra, Achnanthes, and Cyclotella were dominant in the winter. Synedra and Cryptomonas were the dominant genera throughout the year. The correlation analysis shows that TP, water temperature, and SDD were the most important driving factors for the spatial and temporal variations of phytoplankton. Notable spatial differences were recorded for Cryptomonas, while minimal variations were recorded for the remaining species. A smaller number sampling sites and a higher sampling frequency are needed to characterize the phytoplankton community in the Shahe Reservoir.


Assuntos
Monitoramento Ambiental , Eutrofização , Água Doce , Fitoplâncton/crescimento & desenvolvimento , Biomassa , China , Cianobactérias , Nitrogênio/análise , Fósforo/análise , Estações do Ano , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...