Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Bioorg Chem ; 150: 107562, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901282

RESUMO

Accumulating data support the key roles of the NLRP3 inflammasome, an essential component of the innate immune system, in human pathophysiology. As an emerging drug target and a potential biomarker for human diseases, small molecule inhibitors of the NLRP3 inflammasome have been actively pursued. Our recent studies identified a small molecule, MS-II-124, as a potent NLRP3 inhibitor and potential imaging probe. In this report, MS-II-124 was further characterized by an unbiased and comprehensive analysis through Eurofins BioMAP Diversity PLUS panel that contains 12 human primary cell-based systems. The analysis revealed promising activities of MS-II-124 on inflammation and immune functions, further supporting the roles of the NLRP3 inflammasome in these model systems. Further studies of MS-II-124 in mouse model of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and NLRP3 knockout mice demonstrated its target engagement, efficacy to suppress inflammatory cytokines and infiltration of immune cells in the lung tissues. In summary, the results support the therapeutic potential of MS-II-124 as a NLRP3 inhibitor and warrant future studies of this compound and its analogs to develop therapeutics for ALI/ARDS.

2.
Dev Cell ; 59(8): 1028-1042.e5, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38452758

RESUMO

The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.


Assuntos
Interferon gama , Fosfotransferases (Aceptor do Grupo Álcool) , Transdução de Sinais , Animais , Humanos , Camundongos , Células HEK293 , Interferon gama/metabolismo , Interferon gama/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
3.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
4.
Mol Cancer Ther ; 22(10): 1115-1127, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721536

RESUMO

Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.


Assuntos
Melanoma , Animais , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Sinteninas/química , Transdução de Sinais , Peptídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722058

RESUMO

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Citotoxicidade Imunológica , Ácidos Graxos , Metabolismo dos Lipídeos , Neoplasias/terapia , Linfócitos T Citotóxicos
6.
Int Immunopharmacol ; 123: 110734, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541108

RESUMO

BACKGROUND: Drug (e.g., acetaminophen, APAP)-associated hepatotoxicity is the major cause of acute liver failure. Emerging evidence shows that initial tissue damage caused by APAP triggers molecular and cellular immune responses, which can modulate the severity of hepatoxicity. The pro-inflammatory and cytotoxic cytokine interferon (IFN)-γ has been reported as a key molecule contributing to APAP-induced liver injury (AILI). However, its cellular source remains undetermined. RESULTS: In the current study, we show that elevation of serum IFN-γ in patients with drug hepatotoxicity correlates with disease severity. Neutralization of IFN-γ in a mouse model of AILI effectively reduces hepatotoxicity. Strikingly, we reveal that IFN-γ is expressed primarily by hepatic neutrophils, not by conventional immune cells with known IFN-γ-producing capability, e.g., CD8+ T cells, CD4+ T cells, natural killer cells, or natural killer T cells. Upon encountering APAP-injured hepatocytes, neutrophils secrete cytotoxic IFN-γ further causing cell stress and damage, which can be abrogated in the presence of blocking antibodies for IFN-γ or IFN-γreceptor. Furthermore, removal of neutrophils in vivo substantially decreases hepatic IFN-γ levels concomitantly with reduced APAP hepatotoxicity, whereas adoptive transfer of IFN-γ-producing neutrophils confers IFN-γ-/- mice susceptibility to APAP administration. CONCLUSIONS: Our findings uncover a novel mechanism of neutrophil action in promoting AILI and provide new insights into immune modulation of the disease pathogenesis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Animais , Camundongos , Acetaminofen/toxicidade , Interferon gama/farmacologia , Neutrófilos , Linfócitos T CD8-Positivos , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Camundongos Endogâmicos C57BL
7.
J Biol Chem ; 299(7): 104915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315790

RESUMO

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.


Assuntos
Morte Celular , Estresse do Retículo Endoplasmático , Ubiquitinas , eIF-2 Quinase , Animais , Camundongos , Apoptose , eIF-2 Quinase/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Resposta a Proteínas não Dobradas
8.
Cells ; 12(6)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980227

RESUMO

Ubiquitin-specific peptidase 16 (USP16) is a deubiquitinase that plays a role in the regulation of gene expression, cell cycle progression, and various other functions. It was originally identified as the major deubiquitinase for histone H2A and has since been found to deubiquitinate a range of other substrates, including proteins from both the cytoplasm and nucleus. USP16 is phosphorylated when cells enter mitosis and dephosphorylated during the metaphase/anaphase transition. While much of USP16 is localized in the cytoplasm, separating the enzyme from its substrates is considered an important regulatory mechanism. Some of the functions that USP16 has been linked to include DNA damage repair, immune disease, tumorigenesis, protein synthesis, coronary artery health, and male infertility. The strong connection to immune response and the fact that multiple oncogene products are substrates of USP16 suggests that USP16 may be a potential therapeutic target for the treatment of certain human diseases.


Assuntos
Histonas , Mitose , Humanos , Masculino , Histonas/metabolismo , Reparo do DNA , Proteases Específicas de Ubiquitina/metabolismo , Enzimas Desubiquitinantes/metabolismo
9.
Front Immunol ; 14: 1118781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793731

RESUMO

We have previously demonstrated that scavenger receptor A (SRA) acts as an immunosuppressive regulator of dendritic cell (DC) function in activating antitumor T cells. Here we investigate the potential of inhibiting SRA activity to enhance DC-targeted chaperone vaccines including one that was recently evaluated in melanoma patients. We show that short hairpin RNA-mediated SRA silencing significantly enhances the immunogenicity of DCs that have captured chaperone vaccines designed to target melanoma (i.e., hsp110-gp100) and breast cancer (i.e., hsp110-HER/Neu-ICD). SRA downregulation results in heightened activation of antigen-specific T cells and increased CD8+ T cell-dependent tumor inhibition. Additionally, small interfering RNA (siRNA) complexed with the biodegradable, biocompatible chitosan as a carrier can efficiently reduce SRA expression on CD11c+ DCs in vitro and in vivo. Our proof-of-concept study shows that direct administration of the chitosan-siRNA complex to mice promotes chaperone vaccine-elicited cytotoxic T lymphocyte (CTL) response, culminating in improved eradication of experimental melanoma metastases. Targeting SRA with this chitosan-siRNA regimen combined with the chaperone vaccine also leads to reprogramming of the tumor environment, indicated by elevation of the cytokine genes (i.e., ifng, il12) known to skew Th1-like cellular immunity and increased tumor infiltration by IFN-γ+CD8+ CTLs as well as IL-12+CD11c+ DCs. Given the promising antitumor activity and safety profile of chaperone vaccine in cancer patients, further optimization of the chitosan-siRNA formulation to potentially broaden the immunotherapeutic benefits of chaperone vaccine is warranted.


Assuntos
Vacinas Anticâncer , Quitosana , Melanoma Experimental , Camundongos , Animais , Células Dendríticas , Quitosana/metabolismo , Antígenos/metabolismo , Chaperonas Moleculares , Interferon gama/metabolismo , Interleucina-12/metabolismo , Receptores Depuradores/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
10.
Hepatology ; 78(1): 45-57, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632993

RESUMO

BACKGROUND AND AIM: Drug-induced liver injury occurs frequently and can be life threatening. Although drug-induced liver injury is mainly caused by the direct drug cytotoxicity, increasing evidence suggests that the interplay between hepatocytes and immune cells can define this pathogenic process. Here, we interrogate the role of the pattern recognition scavenger receptor A (SRA) for regulating hepatic inflammation and drug-induced liver injury. APPROACH AND RESULTS: Using acetaminophen (APAP) or halothane-induced liver injury models, we showed that SRA loss renders mice highly susceptible to drug hepatotoxicity, indicated by the increased mortality and liver pathology. Mechanistic studies revealed that APAP-induced liver injury exaggerated in the absence of SRA was associated with the decreased anti-inflammatory and prosurvival cytokine IL-10 concomitant with excessive hepatic inflammation. The similar correlation between SRA and IL-10 expression was also seen in human following APAP uptake. Bone marrow reconstitution and liposomal clodronate depletion studies established that the hepatoprotective activity of SRA mostly resized in the immune sentinel KCs. Furthermore, SRA-facilitated IL-10 production by KCs in response to injured hepatocytes mitigated activation of the Jun N-terminal kinase-mediated signaling pathway in hepatocytes. In addition, supplemental use of IL-10 with N -acetylcysteine, only approved treatment of APAP overdose, conferred mice improved protection from APAP-induced liver injury. CONCLUSION: We identify a novel hepatocyte-extrinsic pathway governed by the immune receptor SRA that maintains liver homeostasis upon drug insult. Giving that drug (ie, APAP) overdose is the leading cause of acute liver failure, targeting this hepatoprotective SRA-IL-10 axis may provide new opportunities to optimize the current management of drug-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Halotano , Hepatócitos , Receptores Depuradores , Receptores Depuradores/metabolismo , Animais , Camundongos , Acetaminofen/toxicidade , Halotano/toxicidade , Fígado/efeitos dos fármacos , Inflamação , Hepatócitos/metabolismo , Homeostase
11.
Cancer Res ; 83(4): 553-567, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541910

RESUMO

Reciprocal interactions between breast cancer cells and the tumor microenvironment (TME) are important for cancer progression and metastasis. We report here that the deletion or inhibition of sphingosine kinase 2 (SphK2), which produces sphingosine-1-phosphate (S1P), markedly suppresses syngeneic breast tumor growth and lung metastasis in mice by creating a hostile microenvironment for tumor growth and invasion. SphK2 deficiency decreased S1P and concomitantly increased ceramides, including C16-ceramide, in stromal fibroblasts. Ceramide accumulation suppressed activation of cancer-associated fibroblasts (CAF) by upregulating stromal p53, which restrained production of tumor-promoting factors to reprogram the TME and to restrict breast cancer establishment. Ablation of p53 in SphK2-deficient fibroblasts reversed these effects, enabled CAF activation and promoted tumor growth and invasion. These data uncovered a novel role of SphK2 in regulating non-cell-autonomous functions of p53 in stromal fibroblasts and their transition to tumor-promoting CAFs, paving the way for the development of a strategy to target the TME and to enhance therapeutic efficacy. SIGNIFICANCE: Sphingosine kinase 2 (SphK2) facilitates the activation of stromal fibroblasts to tumor-promoting cancer-associated fibroblasts by suppressing host p53 activity, revealing SphK2 as a potential target to reprogram the TME.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Mamárias Animais , Fosfotransferases (Aceptor do Grupo Álcool) , Microambiente Tumoral , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Microambiente Tumoral/fisiologia , Proteína Supressora de Tumor p53/genética
12.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428596

RESUMO

Predominant inflammatory immunological patterns as well as the depletion of CD4+ T cells during nonalcoholic fatty liver disease (NAFLD) are reported to be associated with the progression of hepatocellular carcinoma (HCC). Here, we report that an LRP-1 agonistic peptide, SP16, when administered during advanced NAFLD progression, restored the depleted CD4+ T cell population but did not significantly affect the inflammatory immunological pattern. This data suggests that restoration of CD4+ T cells without modulation of the hepatic immunological pattern is not sufficient to prevent HCC. However, SP16 administered early during NAFLD progression modulated the inflammatory profile. Future studies will determine if regulation of the inflammatory immune response by SP16 early in NAFLD progression will prevent HCC.

13.
Front Oncol ; 12: 913656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106109

RESUMO

Despite recent advances in radiotherapeutic strategies, acquired resistance remains a major obstacle, leading to tumor recurrence for many patients. Once thought to be a strictly cancer cell intrinsic property, it is becoming increasingly clear that treatment-resistance is driven in part by complex interactions between cancer cells and non-transformed cells of the tumor microenvironment. Herein, we report that radiotherapy induces the production of extracellular vesicles by breast cancer cells capable of stimulating tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer stem-like cell expansion. This pro-tumor activity was associated with fibroblast production of the paracrine signaling factor IL-6 and was dependent on the expression of the heparan sulfate proteoglycan CD44v3 on the vesicle surface. Enzymatic removal or pharmaceutical inhibition of its heparan sulfate side chains disrupted this tumor-fibroblast crosstalk. Additionally, we show that the radiation-induced production of CD44v3+ vesicles is effectively silenced by blocking the ESCRT pathway using a soluble pharmacological inhibitor of MDA-9/Syntenin/SDCBP PDZ1 domain activity, PDZ1i. This population of vesicles was also detected in the sera of human patients undergoing radiotherapy, therefore representing a potential biomarker for radiation therapy and providing an opportunity for clinical intervention to improve treatment outcomes.

14.
Eur J Med Chem ; 238: 114468, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635948

RESUMO

NLRP3 inflammasome dysregulation has been observed in many human diseases including neurodegenerative disorders. Thus, development of small molecule inhibitors targeting this protein complex represents a promising strategy to achieve disease intervention. In our continuing efforts to develop NLRP3 inhibitors, a recently identified lead inhibitor, YQ128, was further modified and optimized. The structure-activity relationship studies of this lead compound suggested its flexibility for structural modifications while the sulfonamide and benzyl moiety demonstrated being important for selectivity. Additionally, the systematic SAR studies also provided insights for designing NLRC4 and AIM2 inflammasome inhibitors. A new lead inhibitor, 19, was identified with improved potency (IC50: 0.12 ± 0.01 µM) and binding affinity (KD: 84 nM). Further characterization of this lead compound using wild type and nlrp3-/- mice confirmed its in vivo selective target engagement. PET studies using a radiotracer based on the structure of 19 also demonstrated its improved brain penetration compared to previous lead compounds. These results strongly encourage further testing of 19 in disease models.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
16.
Front Oncol ; 12: 812560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402258

RESUMO

melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.

17.
Cell Rep ; 38(9): 110454, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235789

RESUMO

To discover distinct immune responses promoting or inhibiting hepatocellular carcinoma (HCC), we perform a three-dimensional analysis of the immune cells, correlating immune cell types, interactions, and changes over time in an animal model displaying gender disparity in nonalcoholic fatty liver disease (NAFLD)-associated HCC. In response to a Western diet (WD), animals mount acute and chronic patterns of inflammatory cytokines, respectively. Tumor progression in males and females is associated with a predominant CD8+ > CD4+, Th1 > Th17 > Th2, NKT > NK, M1 > M2 pattern in the liver. A complete rescue of females from HCC is associated with an equilibrium Th1 = Th17 = Th2, NKT = NK, M1 = M2 pattern, while a partial rescue of males from HCC is associated with an equilibrium CD8+ = CD4+, NKT = NK and a semi-equilibrium Th1 = Th17 > Th2 but a sustained M1 > M2 pattern in the liver. Our data suggest that immunological pattern-recognition can explain immunobiology of HCC and guide immune modulatory interventions for the treatment of HCC in a gender-specific manner.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/patologia , Dieta Ocidental , Progressão da Doença , Feminino , Neoplasias Hepáticas/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia
18.
Methods Mol Biol ; 2455: 49-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35212985

RESUMO

Fatty acid beta oxidation (FAO) is a predominant bioenergetic pathway in mammals. Substantial investigations have demonstrated that FAO activity is dysregulated in many pathophysiological conditions including nonalcoholic steatohepatitis (NASH). Convenient and quantitative assays of FAO activities are important for studies of cell metabolism and the biological relevance of FAO to health and diseases. However, most current FAO assays are based on non-physiological culture conditions, measure FAO activity indirectly or lack adequate quantification. We herein describe details of practical protocols for measurement of basal and genetically or pharmacologically regulated FAO activities in the mammalian system. We also discuss the advantages and disadvantages of these assays in the context of experimental purposes.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Metabolismo Energético , Lipólise , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Res ; 81(9): 2429-2441, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33727225

RESUMO

Antigen-specific immunotherapy can be limited by induced tumor immunoediting (e.g., antigen loss) or through failure to recognize antigen-negative tumor clones. Melanoma differentiation-associated gene-7/IL24 (MDA-7/IL24) has profound tumor-specific cytotoxic effects in a broad spectrum of cancers. Here we report the enhanced therapeutic impact of genetically engineering mouse tumor-reactive or antigen-specific T cells to produce human MDA-7/IL24. While mock-transduced T cells only killed antigen-expressing tumor cells, MDA-7/IL24-producing T cells destroyed both antigen-positive and negative cancer targets. MDA-7/IL24-expressing T cells were superior to their mock-engineered counterparts in suppressing mouse prostate cancer and melanoma growth as well as metastasis. This enhanced antitumor potency correlated with increased tumor infiltration and expansion of antigen-specific T cells as well as induction of a Th1-skewed immunostimulatory tumor environment. MDA-7/IL24-potentiated T-cell expansion was dependent on T-cell-intrinsic STAT3 signaling. Finally, MDA-7/IL24-modified T-cell therapy significantly inhibited progression of spontaneous prostate cancers in Hi-Myc transgenic mice. Taken together, arming T cells with tumoricidal and immune-potentiating MDA-7/IL24 confers new capabilities of eradicating antigen-negative cancer cell clones and improving T-cell expansion within tumors. This promising approach may be used to optimize cellular immunotherapy for treating heterogeneous solid cancers and provides a mechanism for inhibiting tumor escape. SIGNIFICANCE: This research describes a novel strategy to overcome the antigenic heterogeneity of solid cancers and prevent tumor escape by engineering T lymphocytes to produce a broad-spectrum tumoricidal agent.


Assuntos
Transferência Adotiva/métodos , Engenharia Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Interleucinas/metabolismo , Melanoma/terapia , Neoplasias da Próstata/terapia , Neoplasias Cutâneas/terapia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Interleucinas/genética , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Transfecção , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...