Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752706

RESUMO

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Assuntos
Acetil-CoA Carboxilase , Inibidores Enzimáticos , Resistência a Herbicidas , Herbicidas , Mutação , Oryza , Proteínas de Plantas , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/química , Oryza/genética , Oryza/enzimologia , Herbicidas/farmacologia , Herbicidas/química , Resistência a Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/enzimologia
2.
Plant Cell ; 36(5): 1697-1717, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299434

RESUMO

Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.


Assuntos
Ciclopentanos , Flores , Regulação da Expressão Gênica de Plantas , Oryza , Oxilipinas , Infertilidade das Plantas , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento , Flores/fisiologia , Infertilidade das Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Plantas Geneticamente Modificadas , Mutação
3.
J Agric Food Chem ; 72(8): 4277-4291, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288993

RESUMO

Salt stress significantly impedes plant growth and the crop yield. This study utilized de novo transcriptome assembly and ribosome profiling to explore mRNA translation's role in rice salt tolerance. We identified unrecognized translated open reading frames (ORFs), including 42 upstream transcripts and 86 unannotated transcripts. A noteworthy discovery was the role of a small ORF, Ospep5, in conferring salt tolerance. Overexpression of Ospep5 in plants increased salt tolerance, while its absence led to heightened sensitivity. This hypothesis was corroborated by the findings that exogenous application of the synthetic small peptide Ospep5 bolstered salt tolerance in both rice and Arabidopsis. We found that the mechanism underpinning the Ospep5-mediated salt tolerance involves the maintenance of intracellular Na+/K+ homeostasis, facilitated by upregulation of high-affinity potassium transporters (HKT) and Na+/H+ exchangers (SOS1). Furthermore, a comprehensive multiomics approach, particularly ribosome profiling, is instrumental in uncovering unannotated ORFs and elucidating their functions in plant stress responses.


Assuntos
Arabidopsis , Oryza , Estresse Salino , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Sódio/metabolismo , Plantas Tolerantes a Sal/metabolismo , Transcriptoma , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo
4.
J Agric Food Chem ; 71(41): 15186-15193, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788677

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an ideal target for herbicide resistance genetic engineering. In this study, a mutant MFRR-2 with mesotrione resistance was screened from an Oryza sativa HPPD and mutant-Zea mays HPPD DNA shuffling library. The enzyme properties showed that although the stability of the mutant decreased in vitro, the enzyme activity of MFRR-2 at the optimum temperature of 25 °C was still equivalent to that of OsHPPD. Under 50 µM mesotrione treatment, MFRR-2 enzyme activity remained at approximately 90%, while the enzyme activity of OsHPPD decreased by approximately 50%. Surprisingly, Fe2+ was found to have an inhibitory effect on the enzyme activity. Then, the transgenic rice of the MFRR-2 gene showed approximately 1.5 times mesotrione resistance compared to OsHPPD transgenic rice. In conclusion, this study has conducted a beneficial exploration on the use of DNA shuffling for HPPD-directed evolution, and the mutant has potential application value for herbicide resistance genetic engineering.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Herbicidas , Oryza , Resistência a Herbicidas/genética , 4-Hidroxifenilpiruvato Dioxigenase/genética , Oryza/genética , Herbicidas/farmacologia , Embaralhamento de DNA , Inibidores Enzimáticos/farmacologia
5.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449344

RESUMO

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Assuntos
COVID-19 , Lonicera , Ácido Oleanólico , Plantas Medicinais , Saponinas , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/genética , Saponinas/química , Genômica , Evolução Molecular
6.
Sci Adv ; 8(36): eabn5057, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083905

RESUMO

Cytokinin plays critical roles in root development. Cytokinin signaling depends on activation of key transcription factors known as type B Arabidopsis response regulators (ARRs). However, the mechanisms underlying the finely tuned regulation of type B ARR activity remain unclear. In this study, we demonstrate that the ERF-associated amphiphilic repression (EAR) motif-containing protein TCP interactor containing ear motif protein2 (TIE2) forms a negative feedback loop to finely tune the activity of type B ARRs during root development. Disruption of TIE2 and its close homolog TIE1 causes severely shortened roots. TIE2 interacts with type B ARR1 and represses transcription of ARR1 targets. The cytokinin response is correspondingly enhanced in tie1-1 tie2-1. We further show that ARR1 positively regulates TIE1 and TIE2 by directly binding to their promoters. Our findings demonstrate that TIEs play key roles in controlling plant development and reveal an important negative feedback regulation mechanism for cytokinin signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Biotechnol J ; 20(4): 722-735, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34812570

RESUMO

Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.


Assuntos
Arabidopsis , Verticillium , Arabidopsis/metabolismo , Resistência à Doença/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Gossypium/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Foods ; 10(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34828843

RESUMO

A novel rice germplasm sbeIIb/Lgc1 producing grains rich in resistant starch (RS) but low in glutelin has been developed through CRISPR/Cas9-mediated targeted mutagenesis for its potential benefits to patients with diabetes and kidney diseases. In this study, a hydrothermal approach known as heat-moisture treatment (HMT) was identified as a simple and effective method in reinforcing the nutritional benefits of sbeIIb/Lgc1 rice. As a result of HMT treatment at 120 °C for 2 h, significant reductions in in vitro digestibility and enhancements in RS content were observed in sbeIIb/Lgc1 rice flour when the rice flour mass fraction was 80% and 90%. The low-glutelin feature of sbeIIb/Lgc1 rice was not compromised by HMT. The potential impacts of HMT on a range of physicochemical properties of sbeIIb/Lgc1 rice flour have also been analyzed. HMT resulted in a darker color of rice flour, alteration in the semi-crystalline structure, an increase in gelatinization temperatures, and reductions in the pasting viscosities as the moisture content increased. This study provides vital data for the food industry to facilitate the application of this dual-functional rice flour as a health food ingredient.

9.
Plant Cell Environ ; 44(9): 2951-2965, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008219

RESUMO

Maintaining Na+ /K+ homeostasis is a critical feature for plant survival under salt stress, which depends on the operation of Na+ and K+ transporters. Although some K+ transporters mediating root K+ uptake have been reported to be essential to the maintenance of Na+ /K+ homeostasis, the effect of K+ long-distance translocation via phloem on plant salt tolerance remains unclear. Here, we provide physiological and genetic evidence of the involvement of phloem-localized OsAKT2 in rice salt tolerance. OsAKT2 is a K+ channel permeable to K+ but not to Na+ . Under salt stress, a T-DNA knock-out mutant, osakt2 and two CRISPR lines showed a more sensitive phenotype and higher Na+ accumulation than wild type. They also contained more K+ in shoots but less K+ in roots, showing higher Na+ /K+ ratios. Disruption of OsAKT2 decreases K+ concentration in phloem sap and inhibits shoot-to-root redistribution of K+ . In addition, OsAKT2 also regulates the translocation of K+ and sucrose from old leaves to young leaves, and affects grain shape and yield. These results indicate that OsAKT2-mediated K+ redistribution from shoots to roots contributes to maintenance of Na+ /K+ homeostasis and inhibition of root Na+ uptake, providing novel insights into the roles of K+ transporters in plant salt tolerance.


Assuntos
Grão Comestível/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Tolerância ao Sal , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Silenciamento de Genes , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Canais de Potássio/genética , Canais de Potássio/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
10.
J Agric Food Chem ; 68(36): 9733-9742, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786832

RESUMO

A high-resistant starch (RS) and low-glutelin diet is beneficial for the health of patients with diabetes and kidney diseases. Rice is an important food crop worldwide. Previous studies have demonstrated that downregulating the expression of rice starch branching enzyme IIb (SBEIIb) affected the composition and the structure of starch. However, there has been no report about generating the loss-of-function mutants of SBEIIb using low-glutelin rice cultivars as recipients. In this study, we adopted a CRISPR/Cas9 system to induce site-specific mutations at the SBEIIb locus in an elite low-glutelin japonica rice cultivar derived from Low Glutelin Content-1 (LGC-1) and successfully obtained two independent transgene-free sbeIIb/Lgc1 mutant lines. In the mutant lines, the apparent amylose content (AAC) was increased by approximately 1.8-fold and the RS content reached approximately 6%. The glutelin content was approximately 2%, maintaining the low-glutelin trait of the recipient cultivar. The formation mechanism of RS was explored by analyzing the fine structures and the properties of starch. According to the X-ray diffraction pattern and the increased lipid content, the high RS content of the sbeIIb/Lgc1 lines was attributed to the increased content of amylose-lipid complex. Further analyses of the nutritional quality revealed that the soluble sugar and lipid contents, especially sucrose and unsaturated fatty acids, increased in the sbeIIb/Lgc1 lines significantly. This research is expected to facilitate the cultivation and the application of functional rice suitable for patients with diabetes and kidney diseases.


Assuntos
Glutens/análise , Oryza/genética , Plantas Geneticamente Modificadas/química , Alelos , Sistemas CRISPR-Cas , Alimentos Geneticamente Modificados , Glutens/metabolismo , Mutagênese , Oryza/química , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
12.
PLoS Genet ; 14(3): e1007296, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570704

RESUMO

Shoot branching is a major determinant of plant architecture and is regulated by both endogenous and environmental factors. BRANCHED1 (BRC1) is a central local regulator that integrates signals controlling shoot branching. So far, the regulation of BRC1 activity at the protein level is still largely unknown. In this study, we demonstrated that TIE1 (TCP interactor containing EAR motif protein 1), a repressor previously identified as an important factor in the control of leaf development, also regulates shoot branching by repressing BRC1 activity. TIE1 is predominantly expressed in young axillary buds. The gain-of-function mutant tie1-D produced more branches and the overexpression of TIE1 recapitulated the increased branching of tie1-D, while disruption of TIE1 resulted in lower bud activity and fewer branches. We also demonstrated that the TIE1 protein interacts with BRC1 in vitro and in vivo. Expression of BRC1 fused with the C-terminus of the TIE1 protein in wild type caused excessive branching similar to that observed in tie1-D and brc1 loss-of-function mutants. Transcriptome analyses revealed that TIE1 regulated about 30% of the BRC1-dependent genes, including the BRC1 direct targets HB21, HB40 and HB53. These results indicate that TIE1 acts as a positive regulator of shoot branching by directly repressing BRC1 activity. Thus, our results reveal that TIE1 is an important shoot branching regulator, and provide new insights in the post-transcriptional regulation of the TCP transcription factor BRC1.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Brotos de Planta/crescimento & desenvolvimento , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Brotos de Planta/genética , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
13.
Plant Signal Behav ; 11(3): e1150404, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26914912

RESUMO

As the sessile organisms, plants evolve different strategies to survive in adverse environmental conditions. The elaborate regulation of shoot branching is an important strategy for plant morphological adaptation to various environments, while the regulation of reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA) is pivotal for plant responses to biotic and abiotic stresses. Recently, we have demonstrated that Arabidopsis EXB1, a WRKY transcription factor, is a positive regulator of shoot branching as a cover story in Plant Cell. Here we show that WRKY23, an EXB1 close member, has a redundant role in control of shoot branching. We further show that EXB1 is induced by H2O2, ABA or mannitol treatments, suggesting that EXB1 may also play roles in plant responses to abiotic stresses. RNA-sequencing (RNA-seq) analysis using 4EnhpEXB1-EXB1GR inducible line indicates that the genes involved in oxidative stress, oxidation reduction, SA or JA signaling pathway are regulated by EXB1 induction in a short time. We suggest that EXB1/WRKY71 transcription factor may play pivotal roles in plant adaptation to environments by both morphological and physiological ways.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Estresse Fisiológico , Fatores de Transcrição/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Manitol/farmacologia , Oxirredução , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Cell ; 27(11): 3112-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26578700

RESUMO

Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Inativação Gênica , Homeostase , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/ultraestrutura , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/genética
15.
Cell Res ; 25(1): 121-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378179

RESUMO

Ovules are essential for plant reproduction and develop into seeds after fertilization. Sporocyteless/nozzle (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits topless/topless-related (TPL/TPR) co-repressors to inhibit the Cincinnata (CIN)-like Teosinte branched1/cycloidea/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Mapas de Interação de Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética
17.
PLoS One ; 8(3): e59720, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544090

RESUMO

Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. Therefore, we carried out a transcriptome study on rice early defense response to M. oryzae. We found that the transcriptional profiles of rice compatible and incompatible interactions with M. oryzae were mostly similar, with genes regulated more prominently in the incompatible interactions. The functional analysis showed that the genes involved in signaling and secondary metabolism were extensively up-regulated. In particular, WRKY transcription factor genes were significantly enriched among the up-regulated genes. Overexpressing one of these WRKY genes, OsWRKY47, in transgenic rice plants conferred enhanced resistance against rice blast fungus. Our results revealed the sophisticated transcriptional reprogramming of signaling and metabolic pathways during rice early response to M. oryzae and demonstrated the critical roles of WRKY transcription factors in rice blast resistance.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica , Magnaporthe/fisiologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Oryza/imunologia , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Regulação para Cima/genética
18.
Plant Cell ; 25(2): 421-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23444332

RESUMO

Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares , Folhas de Planta/citologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...