Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399152

RESUMO

Mg alloys with excellent high-temperature mechanical properties are urgently desired to meet the design requirements of new-generation aircraft. Herein, novel cast Mg-10Gd-2Y-0.4Zn-0.2Ca-0.5Zr-xAg alloys were designed and prepared according to the advantages of multi-component alloying. The SEM and XRD results revealed that the as-cast microstructures contained α-Mg grains, ß, and Zr-containing phase. As Ag rose from 0 wt.% to 2.0 wt.%, the grain size was refined from 40.7 µm to 33.5 µm, and the ß phase significantly increased. The TEM observations revealed that the nano-scaled γ' phase could be induced to precipitate in the α-Mg matrix by the addition of Ag. The stacking sequence of lamellar γ' phases is ABCA. The multiple strengthening phases, including ß phase, γ' phases, and Zr-containing particles, were effectively tailored through alloying and synergistically enhanced the mechanical properties. The ultimate tensile strength increased from 154.0 ± 3.5 MPa to 231.0 ± 4.0 MPa at 548 K when Ag was added from 0 to 2.0 wt.%. Compared to the Ag-free alloy, the as-cast alloy containing 2.0 wt.% Ag exhibited a minor reduction in ultimate tensile strength (7.0 ± 4.0 MPa) from 498 K to 548 K. The excellent high-temperature performance of the newly developed Mg-RE-Ag alloy has great value in promoting the use of Mg alloys in aviation industries.

2.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297120

RESUMO

Strengthening the CoCrFeNi high entropy alloy with a face-center cubic structure has become a research prospect in the last decade. Alloying with double elements, Nb and Mo, is an effective method. In this paper, to further enhance the strength of the Nb and Mo contained high entropy alloy, CoCrFeNiNb0.2Mo0.2 was annealing treated at different temperatures for 24 h. As a result, a new kind of Cr2Nb type nano-scale precipitate with a hexagonal close-packed structure was formed, which is semi-coherent with the matrix. Moreover, by adjusting the annealing temperature, the precipitate was tailored with a considerable quantity and fine size. The best overall mechanical properties were achieved in the alloy annealed at 700 °C. The yield strength, ultimate tensile strength, and elongation are 727 MPa, 1.05 GPa, and 8.38%, respectively. The fracture mode of the annealed alloy is a mixture of cleavage and necking-featured ductile fracture. The approach employed in this study offers a theoretical foundation for enhancing the mechanical properties of face-centered cubic high entropy alloys via annealing treatment.

3.
Materials (Basel) ; 16(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297288

RESUMO

Strengthening Mg alloys with rare earth elements has been a research focus for several decades. To minimize the usage of rare earth elements while enhancing mechanical properties, we adopted the strategy of alloying with multiple rare earth elements, namely Gd, Y, Nd, and Sm. Additionally, to promote the precipitation of basal precipitate, Ag and Zn doping was also induced. Thus, we designed a new cast Mg-2Gd-2Y-2Nd-2Sm-1Ag-1Zn-0.5Zr (wt.%) alloy. The microstructure of the alloy and its relevance to mechanical properties in various heat treatment conditions were investigated. After undergoing a heat treatment process, the alloy demonstrated exceptional mechanical properties, with a yield strength of 228 MPa and an ultimate tensile strength of 330 MPa achieved through peak-aging for 72 h at 200 °C. The excellent tensile properties are due to the synergistic effect of basal γ″ precipitate and prismatic ß' precipitate. In its as-cast state, its primary mode of fracture is inter-granular, whereas in the solid-solution and peak-aging conditions, the predominant mode of fracture is a mixture of trans-granular and inter-granular fractures.

4.
Materials (Basel) ; 15(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500108

RESUMO

Enhancing the mechanical properties of magnesium alloys to meet the urgent need for their lightweight applications in the aerospace field has always been a great challenge. Herein, the effect of Ag on the microstructure and tensile properties of the Mg-2.5Nd-1.0Sm-0.4Zn-0.1Ca-0.5Zr (EK30) alloy prepared by integrated extrusion and equal-channel angular pressing is studied. The microstructure of as-extruded alloys consists of α-Mg grains and the ß phase. The addition of Ag increases the ß-phase content. The ß phase can promote dynamic recrystallization by inducing a particle-stimulated nucleation mechanism and inhibiting grain growth, which leads to grain refinement and texture weakening. At 250 °C, the ultimate tensile strength of the EK30-2.0Ag alloy (225.9 MPa) increased by 13.8% compared to the Ag-free alloy (198.4 MPa). When the tensile temperature increased from 25 °C to 250 °C, the ultimate tensile strength of the EK30-2.0Ag alloy decreased by 14.3%, from 263.7 MPa to 225.9 MPa. Notably, the addition of Ag slightly reduced the elongation of the alloy at 250 °C; the elongations of the EK30-2.0Ag alloy and the EK30 alloy are 41.5% and 37.0%, respectively. The elongation of the EK30-2.0Ag alloy increased from 22.7% at 25 °C to 52.7% at 275 °C. All alloy tensile fractures exhibited typical plastic fracture characteristics. This study provides an effective way to enhance the high-temperature mechanical properties of magnesium alloys by Ag alloying and a special severe plastic deformation method.

5.
Materials (Basel) ; 14(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34501125

RESUMO

The effect of solution treatment time on the microstructure and mechanical properties of aged the Mg-2.0Nd-2.0Sm-0.4Zn-0.4Zr (wt.%) alloy were investigated to give full play to the performance of the alloy. As the solution treatment time increased from 2 h to 12 h at 788 K, the grain size of the solution-treated alloy significantly increased, and the network-like ß-Mg12(Nd, Sm, Zn) phase gradually dissolved into the α-Mg matrix. It should be noted that no obvious residual ß phase can be observed when the solution treatment time was more than 8 h. After the solution-treated alloy was further aged at 473 K for 18 h, a large number of nanoscale precipitates were observed in the α-Mg matrix. The solution treatment time was 2 h, the α-Mg matrix mainly consisted of spherical-shaped and basal plate-shaped precipitates. Upon the increase of solution treatment time to 8 h, the key strengthening phases transformed from spherical-shaped precipitates and basal plate-shaped precipitates to prismatic plate-shaped ß' precipitates. The orientation relationship between ß' precipitates and α-Mg matrix was (1¯10)ß' // (11¯00)α and [112]ß' // the [224¯3]α. Further increasing of solution treatment time from 8 h to 12 h, the key strengthening phases mainly were still ß' precipitates. The solution treatment of aged alloy was carried out at 788 K for 8 h, which achieved optimal ultimate tensile strength (UTS) of 261 ± 4.1 MPa, yield strength (YS) of 154 ± 1.5 MPa, and elongation of 5.8 ± 0.1%, respectively.

6.
ACS Appl Mater Interfaces ; 11(38): 34827-34840, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31461258

RESUMO

Ni-Mn-Sn ferromagnetic shape memory alloys (FSMAs) have promise for application in efficient solid-state refrigeration. However, the simultaneous achievement of giant magnetocaloric effect (MCE) and excellent mechanical properties and high working temperature in these materials is always the challenge. Computation-guided materials design techniques provide an efficient way to design and identify new magnetocaloric materials. Herein, a new strategy of multidoping is presented. First, we conduct a detailed and comprehensive first-principles study and predict that Ni-Mn-Sn FSMAs with co-doping 6.25 atom % Cu and 6.25-12.5 atom % Co can realize the multiobjective optimization of magnetocaloric material. Then, it is confirmed by experiment and we report on Ni40Co8Mn37Sn9Cu6 FSMA exhibiting a large magnetic entropy change (34.8 J/(kg K)) of a large value in the prevalent MCE materials at high temperature (∼344 K) and whose compression stress and strain (∼1072.0 MPa and ∼11.9%) are both the largest among Ni-Mn-based MCE materials. Notably, the effect of Co and Cu doping is not simply stacked because they play opposite roles in Curie temperature (TC) and martensitic transformation temperature (TM). So, achieving the balance of their effect to combine their merits in a very narrow window is the key step. This approach of multielement doping holds promise to be extended to other magnetocaloric materials to enhance their multiple properties simultaneously.

7.
Mikrochim Acta ; 185(2): 91, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594616

RESUMO

The development of novel nanomaterials brings new opportunity and challenge for high sensing detection of biomolecules. The authors describe the preparation of 3-dimentional hollow graphene balls (3D HGBs) using nickel nanoparticles (Ni-NPs) as the template. The Ni-NPs were synthesized by chemical reduction of nickel chloride and then graphene was coated onto their surface via carburization and carbonization. After etching Ni-NPs, 3D HGBs with few layers and a typical size of 100 nm were obtained. They were sprayed onto indium tin oxide glass to obtain a working electrode for electrochemical determination of levodopa in the presence of uric acid. Due to the unique hollow porous structure of the 3D HGBs, the electrode exhibits a sensitivity of 0.69 µA·µM-1·cm-2 and a 1 µM limit of detection. It is selective, reproducible and stable. It was applied to the determination of levodopa in spiked human plasma samples and it is of potential use in clinical research. Graphical abstract Schematic presentation of the preparation of 3-dimensional hollow graphene balls (HGBs) by using nickel nanoparticles as a template that can be removed by etching. The HGBs were sprayed onto indium tin oxide (ITO) glass to obtain a working electrode that has a sensitivity of 0.69 µA⋅µM-1·cm-2 and a 1 µM limit of detection for the determination of levodopa.


Assuntos
Eletrodos/normas , Levodopa/análise , Ácido Úrico , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/normas , Grafite , Humanos , Levodopa/sangue , Nanopartículas Metálicas/química , Níquel , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Compostos de Estanho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...